
Table of Contents

1. Installation and Setup
Option 1: CDN (Quick Start)
Option 2: Vue CLI (Full Project Setup)

2. Project Structure (Vue CLI)
3. Basic Component Structure
4. Data Binding

1. Interpolation (Text Binding):
2. Attribute Binding (v-bind):

5. Event Handling
6. Form Binding (v-model)
7. Conditional Rendering
8. List Rendering
9. Components

Parent Component (App.vue):
Child Component (ChildComponent.vue):

10. Computed Properties
11. Watchers
12. Lifecycle Hooks
13. Class and Style Binding

1. Dynamic Classes:
2. Inline Styles:

14. Routing (Vue Router)
15. State Management (Vuex)
16. Useful CLI Commands

1. Installation and Setup

Option 1: CDN (Quick Start)

<script src="https://cdn.jsdelivr.net/npm/vue@3.2.36"></script>
<div id="app">{{ message }}</div>

<script>
const app = Vue.createApp({

 data() {
 return {
 message: 'Hello, Vue!'
 }
 }
}).mount('#app');
</script>

Option 2: Vue CLI (Full Project Setup)

Install Vue CLI (Globally):1.

npm install -g @vue/cli

Create New Project:2.

vue create my-vue-app
cd my-vue-app
npm run serve

Visit:3.

http://localhost:8080

2. Project Structure (Vue CLI)
my-vue-app/
│
├── public/ # Static files
│
├── src/ # Main app code
│ ├── components/ # Vue components
│ ├── App.vue # Root component
│ ├── main.js # App entry point
│
├── package.json # Project dependencies
└── README.md

3. Basic Component Structure
App.vue (Single File Component):

<template>
 <div>
 <h1>{{ message }}</h1>
 </div>
</template>

<script>
export default {
 data() {
 return {
 message: 'Welcome to Vue.js'
 }
 }
}
</script>

<style>
h1 {
 color: #42b983;
}
</style>

4. Data Binding

1. Interpolation (Text Binding):

<h1>{{ message }}</h1>

2. Attribute Binding (v-bind):

or shorthand:

5. Event Handling
<button @click="increment">Click Me</button>
<p>Count: {{ count }}</p>

<script>
export default {
 data() {
 return { count: 0 }
 },
 methods: {
 increment() {
 this.count++;
 }
 }
}
</script>

6. Form Binding (v-model)
<input v-model="username" placeholder="Enter your name">
<p>Username: {{ username }}</p>

<script>
export default {
 data() {

 return { username: '' }
 }
}
</script>

7. Conditional Rendering
<p v-if="isLoggedIn">Welcome Back!</p>
<p v-else>Please log in.</p>

<script>
export default {
 data() {
 return { isLoggedIn: false }
 }
}
</script>

8. List Rendering

 <li v-for="(item, index) in items" :key="index">
 {{ item }}

<script>
export default {
 data() {
 return {
 items: ['Apple', 'Banana', 'Cherry']
 }
 }
}

</script>

9. Components

Parent Component (App.vue):

<template>
 <div>
 <ChildComponent message="Hello from Parent!" />
 </div>
</template>

<script>
import ChildComponent from './components/ChildComponent.vue';
export default {
 components: {
 ChildComponent
 }
}
</script>

Child Component (ChildComponent.vue):

<template>
 <h2>{{ message }}</h2>
</template>

<script>
export default {
 props: ['message']
}
</script>

10. Computed Properties
<p>Reversed Message: {{ reversedMessage }}</p>

<script>
export default {
 data() {
 return { message: 'Vue.js' }
 },
 computed: {
 reversedMessage() {
 return this.message.split('').reverse().join('');
 }
 }
}
</script>

11. Watchers
<p>Counter: {{ count }}</p>

<script>
export default {
 data() {
 return { count: 0 }
 },
 watch: {
 count(newVal, oldVal) {
 console.log(`Count changed from ${oldVal} to ${newVal}`);
 }
 }
}
</script>

12. Lifecycle Hooks
export default {
 created() {
 console.log('Component Created');
 },
 mounted() {
 console.log('Component Mounted');
 },
 updated() {
 console.log('Component Updated');
 },
 beforeUnmount() {
 console.log('Component Unmounting');
 }
}

13. Class and Style Binding

1. Dynamic Classes:

<div :class="{ active: isActive }">Dynamic Class</div>

data() {
 return { isActive: true }
}

2. Inline Styles:

<div :style="{ color: activeColor, fontSize: fontSize + 'px' }">Styled
Text</div>

data() {
 return {
 activeColor: 'red',
 fontSize: 20
 }

}

14. Routing (Vue Router)
Install Vue Router:1.

npm install vue-router@4

Setup Routes (router/index.js):2.

import { createRouter, createWebHistory } from 'vue-router';
import Home from '../views/Home.vue';
import About from '../views/About.vue';

const routes = [
 { path: '/', component: Home },
 { path: '/about', component: About }
];

export default createRouter({
 history: createWebHistory(),
 routes
});

Use Router in App:3.

import { createApp } from 'vue';
import App from './App.vue';
import router from './router';

createApp(App).use(router).mount('#app');

15. State Management (Vuex)
Install Vuex:1.

npm install vuex@4

Setup Store (store/index.js):2.

import { createStore } from 'vuex';

export default createStore({
 state() {
 return {
 count: 0
 }
 },
 mutations: {
 increment(state) {
 state.count++;
 }
 }
});

Use Store in App:3.

import { createApp } from 'vue';
import App from './App.vue';
import store from './store';

createApp(App).use(store).mount('#app');

16. Useful CLI Commands
npm run serve # Start development server
npm run build # Build for production
npm run lint # Lint and fix files

This cheat sheet provides the essential building blocks to get started with Vue.js
and create dynamic web applications

