Table of Contents

a
v

e 1. Installation and Setup
o Option 1: CDN (Quick Start)
o Option 2: Vue CLI (Full Project Setup)
e 2. Project Structure (Vue CLI)
» 3. Basic Component Structure
e 4, Data Binding
o 1. Interpolation (Text Binding):
o 2. Attribute Binding (v-bind):
e 5. Event Handling
e 6. Form Binding (v-model)
e 7. Conditional Rendering
e 8. List Rendering
¢ 9. Components
o Parent Component (App.vue):
o Child Component (ChildComponent.vue):
e 10. Computed Properties
e 11. Watchers
12. Lifecycle Hooks
13. Class and Style Binding
o 1. Dynamic Classes:
o 2. Inline Styles:
14. Routing (Vue Router)
15. State Management (Vuex)
16. Useful CLI Commands

1. Installation and Setup

Option 1: CDN (Quick Start)

<script src="https://cdn.jsdelivr.net/npm/vue@3.2.36"></script>
<div id="app">{{ message }}</div>

<script>
const app = Vue.createApp({

data() {
return {
message: 'Hello, Vue!'

}

}
}) .mount ('#app');
</script>

Option 2: Vue CLI (Full Project Setup)

1. Install Vue CLI (Globally):
npm install -g @vue/cli
2. Create New Project:

vue create my-vue-app
cd my-vue-app
npm run serve

3. Visit:
http://localhost:8080

2. Project Structure (Vue CLI)

my-vue-app/
—— public/ # Static files
—— src/ # Main app code
—— components/ # Vue components
—— App.vue # Root component
— main.js # App entry point
—— package. json # Project dependencies
—— README.md

3. Basic Component Structure

App.vue (Single File Component):

<template>
<div>
<h1>{{ message }}</hl>
</div>
</template>

<script>
export default {
data() {
return {
message: 'Welcome to Vue.js'
¥
}
}

</script>

<style>
hl {
color: #42b983;

}
</style>

4. Data Binding

1. Interpolation (Text Binding):

<h1>{{ message }}</hl>

2. Attribute Binding (v-bind):

or shorthand:

5. Event Handling

<button @click="increment">Click Me</button>
<p>Count: {{ count }}</p>

<script>
export default {
data() {
return { count: 0 }
}
methods: {
increment() {
this.count++;
}
}
}

</script>

6. Form Binding (v-model)

<input v-model="username" placeholder="Enter your name">
<p>Username: {{ username }}</p>

<script>
export default {
data() {

return { username: '' }

}
}

</script>

7. Conditional Rendering

<p v-if="islLoggedIn">Welcome Back!</p>
<p v-else>Please log in.</p>

<script>
export default {
data() {
return { isLoggedIn: false }
}
}

</script>

8. List Rendering

<li v-for="(item, index) in items" :key="index">
{{ item }}
</1li>

<script>
export default {
data() {
return {
items: ['Apple', 'Banana', 'Cherry']
}
}
}

</script>

9. Components

Parent Component (App.vue):

<template>
<div>
<ChildComponent message="Hello from Parent!" />
</div>
</template>

<script>
import ChildComponent from './components/ChildComponent.vue';
export default {
components: {
ChildComponent
}
}

</script>
Child Component (ChildComponent.vue):

<template>
<h2>{{ message }}</h2>
</template>

<script>

export default {
props: ['message’]

}

</script>

10. Computed Properties
<p>Reversed Message: {{ reversedMessage }}</p>

<script>
export default {
data() {
return { message: 'Vue.js' }
b,
computed: {
reversedMessage() {
return this.message.split('"').reverse().join("'");

}

}
}

</script>

11. Watchers
<p>Counter: {{ count }}</p>

<script>
export default {
data() {
return { count: 0 }
}
watch: {
count(newVal, oldVal) {
console.log(Count changed from ${oldVal} to ${newVal});

}

}
}

</script>

12. Lifecycle Hooks

export default {
created() {
console. log('Component Created');

}
mounted() {

console.log('Component Mounted');

b,
updated() {
console. log('Component Updated');

b

beforeUnmount() {
console.log('Component Unmounting');

}
}

13. Class and Style Binding

1. Dynamic Classes:

<div :class="{ active: isActive }">Dynamic Class</div>

data() {
return { isActive: true }

}
2. Inline Styles:

<div :style="{ color: activeColor, fontSize: fontSize + 'px' }">Styled
Text</div>

data() {
return {
activeColor: 'red',
fontSize: 20

}

14. Routing (Vue Router)

1. Install Vue Router:
npm install vue-router@4
2. Setup Routes (router/index.js):

import { createRouter, createWebHistory } from 'vue-router';
import Home from '../views/Home.vue';
import About from '../views/About.vue';

const routes = [
{ path: '/', component: Home },
{ path: '/about', component: About }

]’

export default createRouter({
history: createWebHistory(),
routes

})s
3. Use Router in App:

import { createApp } from 'vue';
import App from './App.vue';
import router from './router';

createApp(App) .use(router).mount('#app');

15. State Management (Vuex)

1. Install Vuex:

npm install vuex@4
2. Setup Store (store/index.js):

import { createStore } from 'vuex';

export default createStore({
state() {
return {
count: 0
}
b
mutations: {
increment(state) {
state.count++;

});
3. Use Store in App:

import { createApp } from 'vue';
import App from './App.vue';
import store from './store';

createApp(App) .use(store) . .mount('#app');

16. Useful CLI Commands

npm run serve # Start development server
npm run build # Build for production
npm run lint # Lint and fix files

This cheat sheet provides the essential building blocks to get started with Vue.js
and create dynamic web applications

