Table of Contents

a
v

e 1. Installation and Setup

o Install TypeScript (Globally):

o Check Version:
o |nitialize TypeScript Project (Creates tsconfig.json):

e 2. Compile TypeScript to JavaScript
e 3. Basic TypeScript Example
e 4. Types in TypeScript
o 1. Primitive Types:
o 2. Arrays:
o 3. Tuples (Fixed-Length Array):
o 4, Enums:
o 5, Any (Avoid if Possible):
e 5, Functions in TypeScript
o 1. Basic Function:
o 2. Optional Parameters:
o 3. Default Parameters:
o 4, Rest Parameters:
e 6. Interfaces
e 7. Classes
» 8. Access Modifiers
* 9. Inheritance and Extending Classes
* 10. Type Assertions (Type Casting)
11. Generics
12. Utility Types
13. Union and Intersection Types
o 1. Union Type:
o 2. Intersection Type:
14. Type Guards
15. Async/Await and Promises
16. Working with Modules
o Export Module:
o Import Module:
17. Common TypeScript Commands
18. tsconfig.json (Key Settings)

1. Installation and Setup

Install TypeScript (Globally):

npm install -g typescript

Check Version:

tsc -v

Initialize TypeScript Project (Creates tsconfig.json):

tsc --init

2. Compile TypeScript to JavaScript

tsc index.ts

e Compiles index.ts to index.js
* Watch Mode (Auto-compile on save):

tsc --watch

3. Basic TypeScript Example

index.ts

function greet(name: string): string {
return "Hello, ${name} ;

}
console.log(greet("Alice"));
Compile and Run:

tsc index.ts

node index.js

4. Types in TypeScript

1. Primitive Types:

let isDone: boolean = true;

let age: number = 25;

let firstName: string = "John";
let u: undefined = undefined;
let n: null = null;

2. Arrays:

let numbers: number[] = [1, 2, 3];
let fruits: Array<string> = ["Apple", "Banana"l];

3. Tuples (Fixed-Length Array):
let person: [string, number] = ["Alice", 30];
4. Enums:

enum Direction {
Up,
Down,
Left,
Right
}

let dir: Direction = Direction.Up;
5. Any (Avoid if Possible):

let randomValue: any = 10;
randomValue = "String"; // No Error

5. Functions in TypeScript

1. Basic Function:

function add(a: number, b: number): number {
return a + b;

}
2. Optional Parameters:

function multiply(a: number, b?: number): number {
return b ? a * b : a;

}
3. Default Parameters:

function greet(name: string = "Guest"): string {
return "Hello, ${name} ;

}
4. Rest Parameters:

function sum(...numbers: number[]): number {
return numbers.reduce((acc, n) => acc + n, 0);

}

6. Interfaces

interface User {

id: number;

name: string;

email?: string; // Optional Property
}

const user: User = {
id: 1,
name: "John Doe"

7. Classes

class Person {
name: string;
age: number;

constructor(name: string, age: number) {

this.name = name;
this.age = age;

}
greet() {

console.log(Hello, my name is ${this.name});
}

}

const personl = new Person("Alice", 28);

personl.greet();

8. Access Modifiers

class Employee {
public name: string;
private salary: number;
protected position: string;

constructor(name: string, salary:

this.name = name;
this.salary = salary;
this.position = position;

number, position:

string) {

e public - Accessible from anywhere.
 private - Accessible only within the class.
» protected - Accessible within the class and subclasses.

9. Inheritance and Extending Classes

class Animal {
makeSound () {
console.log("Animal sound");
}
}

class Dog extends Animal {
makeSound () {
console.log("Bark");

}
}

const dog = new Dog();
dog.makeSound(); // Output: Bark

10. Type Assertions (Type Casting)

let value: any = "Hello World";
let strLength: number = (value as string).length;

11. Generics

function identity<T>(arg: T): T {
return arg;

}

let outputl
let output2

identity<string>("Hello");
identity<number>(42);

12. Utility Types

interface User {
id: number;
name: string;
email: string;

}

// Partial — Makes all properties optional
let userUpdate: Partial<User> = { name: "Bob" };

// Readonly — Prevents modification

const userl: Readonly<User> = { id: 1, name: "Alice", email:

"alice@email.com" };

13. Union and Intersection Types

1. Union Type:

let id: number | string;
id 101;
id = "Alol";

2. Intersection Type:

interface ErrorHandling {
success: boolean;
error?: { message: string };

}

interface Data {

data: stringl[];
}

type ApiResponse = ErrorHandling & Data;

14. Type Guards

function isNumber(x: any): x is number {
return typeof x === "number";

}

function printValue(value: number | string) {
if (isNumber(value)) {
console.log(value.toFixed(2)); // Number
} else {
console.log(value.toUpperCase()); // String

}

15. Async/Await and Promises

async function fetchData(): Promise<string> {
return new Promise((resolve) => {
setTimeout(() => resolve("Data loaded"), 2000);
});
}

fetchData().then((data) => console.log(data));

16. Working with Modules

Export Module:

export function add(a: number, b: number): number {
return a + b;

}
Import Module:

import { add } from './math';
console.log(add(5, 10));

17. Common TypeScript Commands

tsc --init # Initialize TypeScript Project
tsc # Compile all .ts files

tsc app.ts # Compile a single file

tsc --watch # Watch for changes

18. tsconfig.json (Key Settings)
{

"compilerOptions": {
"target": "es6",

"module": "commonjs",
"strict": true,
"outDir": "./dist",
"esModulelInterop": true

