
Table of Contents

1. SQL Syntax Overview
2. Database and Table Management

1. Create a Database
2. Delete a Database
3. Use a Database
4. Create a Table
5. Delete a Table
6. Modify a Table

3. Inserting Data
1. Insert Single Row
2. Insert Multiple Rows

4. Querying Data (SELECT)
1. Select All Columns
2. Select Specific Columns
3. Rename Columns (Alias)
4. Distinct Values

5. Filtering Data (WHERE Clause)
1. Basic WHERE Clause
2. Multiple Conditions (AND/OR)
3. Range Filter (BETWEEN)
4. Set Membership (IN)
5. Pattern Matching (LIKE)

6. Sorting Data (ORDER BY)
1. Sort by Single Column
2. Sort by Multiple Columns

7. Limiting and Paginating Results
1. Limit the Number of Results
2. Paginate Results (OFFSET)

8. Aggregation and Grouping
1. Aggregate Functions
2. Grouping Data (GROUP BY)
3. Filtering Groups (HAVING)

9. Updating Data
1. Update a Single Row
2. Update Multiple Rows

10. Deleting Data
1. Delete Specific Rows
2. Delete All Rows

11. Table Joins
1. Inner Join
2. Left Join
3. Right Join
4. Full Outer Join

12. Subqueries
1. Subquery in WHERE Clause
2. Subquery in SELECT

13. Indexing
1. Create an Index
2. Drop an Index

14. Backup and Restore
1. Backup a Database
2. Restore a Database

15. Common SQL Functions
String Functions
Date Functions
Tips for SQL

1. SQL Syntax Overview
SQL (Structured Query Language) is used to manage and manipulate databases.

2. Database and Table Management

1. Create a Database

CREATE DATABASE my_database;

2. Delete a Database

DROP DATABASE my_database;

3. Use a Database

USE my_database;

4. Create a Table

CREATE TABLE employees (
 id INT PRIMARY KEY,
 name VARCHAR(50),
 position VARCHAR(50),
 salary DECIMAL(10, 2)
);

5. Delete a Table

DROP TABLE employees;

6. Modify a Table

Add a Column:

ALTER TABLE employees ADD age INT;

Delete a Column:

ALTER TABLE employees DROP COLUMN age;

Rename a Column:

ALTER TABLE employees RENAME COLUMN name TO full_name;

3. Inserting Data

1. Insert Single Row

INSERT INTO employees (id, name, position, salary)
VALUES (1, 'Alice', 'Manager', 75000);

2. Insert Multiple Rows

INSERT INTO employees (id, name, position, salary)
VALUES
(2, 'Bob', 'Developer', 60000),
(3, 'Carol', 'Analyst', 55000);

4. Querying Data (SELECT)

1. Select All Columns

SELECT * FROM employees;

2. Select Specific Columns

SELECT name, salary FROM employees;

3. Rename Columns (Alias)

SELECT name AS employee_name, salary AS earnings FROM employees;

4. Distinct Values

SELECT DISTINCT position FROM employees;

5. Filtering Data (WHERE Clause)

1. Basic WHERE Clause

SELECT * FROM employees WHERE salary > 60000;

2. Multiple Conditions (AND/OR)

SELECT * FROM employees
WHERE salary > 50000 AND position = 'Developer';

3. Range Filter (BETWEEN)

SELECT * FROM employees
WHERE salary BETWEEN 50000 AND 70000;

4. Set Membership (IN)

SELECT * FROM employees
WHERE position IN ('Manager', 'Analyst');

5. Pattern Matching (LIKE)

SELECT * FROM employees

WHERE name LIKE 'A%'; -- Names starting with A

% – Matches any number of characters
_ – Matches a single character

6. Sorting Data (ORDER BY)

1. Sort by Single Column

SELECT * FROM employees
ORDER BY salary DESC;

2. Sort by Multiple Columns

SELECT * FROM employees
ORDER BY position ASC, salary DESC;

7. Limiting and Paginating Results

1. Limit the Number of Results

SELECT * FROM employees LIMIT 5;

2. Paginate Results (OFFSET)

SELECT * FROM employees LIMIT 5 OFFSET 10;

8. Aggregation and Grouping

1. Aggregate Functions

SELECT COUNT(*) FROM employees; -- Count
SELECT AVG(salary) FROM employees; -- Average
SELECT MAX(salary) FROM employees; -- Maximum
SELECT MIN(salary) FROM employees; -- Minimum
SELECT SUM(salary) FROM employees; -- Sum

2. Grouping Data (GROUP BY)

SELECT position, AVG(salary)
FROM employees
GROUP BY position;

3. Filtering Groups (HAVING)

SELECT position, COUNT(*)
FROM employees
GROUP BY position
HAVING COUNT(*) > 1;

9. Updating Data

1. Update a Single Row

UPDATE employees
SET salary = 80000
WHERE id = 1;

2. Update Multiple Rows

UPDATE employees
SET position = 'Senior Developer'
WHERE position = 'Developer';

10. Deleting Data

1. Delete Specific Rows

DELETE FROM employees
WHERE id = 3;

2. Delete All Rows

DELETE FROM employees;

11. Table Joins

1. Inner Join

SELECT employees.name, departments.name
FROM employees
INNER JOIN departments
ON employees.department_id = departments.id;

2. Left Join

SELECT employees.name, departments.name
FROM employees
LEFT JOIN departments

ON employees.department_id = departments.id;

3. Right Join

SELECT employees.name, departments.name
FROM employees
RIGHT JOIN departments
ON employees.department_id = departments.id;

4. Full Outer Join

SELECT employees.name, departments.name
FROM employees
FULL OUTER JOIN departments
ON employees.department_id = departments.id;

12. Subqueries

1. Subquery in WHERE Clause

SELECT name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

2. Subquery in SELECT

SELECT name,
 (SELECT AVG(salary) FROM employees) AS average_salary
FROM employees;

13. Indexing

1. Create an Index

CREATE INDEX idx_salary ON employees(salary);

2. Drop an Index

DROP INDEX idx_salary;

14. Backup and Restore

1. Backup a Database

mysqldump -u username -p my_database > backup.sql

2. Restore a Database

mysql -u username -p my_database < backup.sql

15. Common SQL Functions

String Functions

SELECT UPPER(name) FROM employees; -- Uppercase
SELECT LOWER(name) FROM employees; -- Lowercase
SELECT LENGTH(name) FROM employees; -- String Length

Date Functions

SELECT NOW(); -- Current date and time
SELECT YEAR(hire_date); -- Extract Year
SELECT DATEDIFF(NOW(), hire_date) FROM employees; -- Date difference

Tips for SQL

Always backup your database before performing large operations.
Use LIMIT to avoid selecting large datasets unintentionally.
Test queries in a sandbox environment before applying to production.
Use JOINs to efficiently combine data from multiple tables.

