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1. SQL Syntax Overview
SQL (Structured Query Language) is used to manage and manipulate databases.

2. Database and Table Management

1. Create a Database

CREATE DATABASE my_database;



2. Delete a Database

DROP DATABASE my_database;

3. Use a Database

USE my_database;

4. Create a Table

CREATE TABLE employees (
    id INT PRIMARY KEY,
    name VARCHAR(50),
    position VARCHAR(50),
    salary DECIMAL(10, 2)
);

5. Delete a Table

DROP TABLE employees;

6. Modify a Table

Add a Column:

ALTER TABLE employees ADD age INT;

Delete a Column:

ALTER TABLE employees DROP COLUMN age;

Rename a Column:



ALTER TABLE employees RENAME COLUMN name TO full_name;

3. Inserting Data

1. Insert Single Row

INSERT INTO employees (id, name, position, salary)
VALUES (1, 'Alice', 'Manager', 75000);

2. Insert Multiple Rows

INSERT INTO employees (id, name, position, salary)
VALUES
(2, 'Bob', 'Developer', 60000),
(3, 'Carol', 'Analyst', 55000);

4. Querying Data (SELECT)

1. Select All Columns

SELECT * FROM employees;

2. Select Specific Columns

SELECT name, salary FROM employees;

3. Rename Columns (Alias)

SELECT name AS employee_name, salary AS earnings FROM employees;



4. Distinct Values

SELECT DISTINCT position FROM employees;

5. Filtering Data (WHERE Clause)

1. Basic WHERE Clause

SELECT * FROM employees WHERE salary > 60000;

2. Multiple Conditions (AND/OR)

SELECT * FROM employees
WHERE salary > 50000 AND position = 'Developer';

3. Range Filter (BETWEEN)

SELECT * FROM employees
WHERE salary BETWEEN 50000 AND 70000;

4. Set Membership (IN)

SELECT * FROM employees
WHERE position IN ('Manager', 'Analyst');

5. Pattern Matching (LIKE)

SELECT * FROM employees



WHERE name LIKE 'A%';  -- Names starting with A

% – Matches any number of characters
_ – Matches a single character

6. Sorting Data (ORDER BY)

1. Sort by Single Column

SELECT * FROM employees
ORDER BY salary DESC;

2. Sort by Multiple Columns

SELECT * FROM employees
ORDER BY position ASC, salary DESC;

7. Limiting and Paginating Results

1. Limit the Number of Results

SELECT * FROM employees LIMIT 5;

2. Paginate Results (OFFSET)

SELECT * FROM employees LIMIT 5 OFFSET 10;



8. Aggregation and Grouping

1. Aggregate Functions

SELECT COUNT(*) FROM employees;         -- Count
SELECT AVG(salary) FROM employees;      -- Average
SELECT MAX(salary) FROM employees;      -- Maximum
SELECT MIN(salary) FROM employees;      -- Minimum
SELECT SUM(salary) FROM employees;      -- Sum

2. Grouping Data (GROUP BY)

SELECT position, AVG(salary)
FROM employees
GROUP BY position;

3. Filtering Groups (HAVING)

SELECT position, COUNT(*)
FROM employees
GROUP BY position
HAVING COUNT(*) > 1;

9. Updating Data

1. Update a Single Row

UPDATE employees
SET salary = 80000
WHERE id = 1;



2. Update Multiple Rows

UPDATE employees
SET position = 'Senior Developer'
WHERE position = 'Developer';

10. Deleting Data

1. Delete Specific Rows

DELETE FROM employees
WHERE id = 3;

2. Delete All Rows

DELETE FROM employees;

11. Table Joins

1. Inner Join

SELECT employees.name, departments.name
FROM employees
INNER JOIN departments
ON employees.department_id = departments.id;

2. Left Join

SELECT employees.name, departments.name
FROM employees
LEFT JOIN departments



ON employees.department_id = departments.id;

3. Right Join

SELECT employees.name, departments.name
FROM employees
RIGHT JOIN departments
ON employees.department_id = departments.id;

4. Full Outer Join

SELECT employees.name, departments.name
FROM employees
FULL OUTER JOIN departments
ON employees.department_id = departments.id;

12. Subqueries

1. Subquery in WHERE Clause

SELECT name, salary
FROM employees
WHERE salary > (SELECT AVG(salary) FROM employees);

2. Subquery in SELECT

SELECT name,
       (SELECT AVG(salary) FROM employees) AS average_salary
FROM employees;



13. Indexing

1. Create an Index

CREATE INDEX idx_salary ON employees(salary);

2. Drop an Index

DROP INDEX idx_salary;

14. Backup and Restore

1. Backup a Database

mysqldump -u username -p my_database > backup.sql

2. Restore a Database

mysql -u username -p my_database < backup.sql

15. Common SQL Functions

String Functions

SELECT UPPER(name) FROM employees;  -- Uppercase
SELECT LOWER(name) FROM employees;  -- Lowercase
SELECT LENGTH(name) FROM employees; -- String Length



Date Functions

SELECT NOW();             -- Current date and time
SELECT YEAR(hire_date);   -- Extract Year
SELECT DATEDIFF(NOW(), hire_date) FROM employees; -- Date difference

Tips for SQL

Always backup your database before performing large operations.
Use LIMIT to avoid selecting large datasets unintentionally.
Test queries in a sandbox environment before applying to production.
Use JOINs to efficiently combine data from multiple tables.


