Table of Contents

a
v

e 1. Structure of a Rust Program

e 2. Variables and Data Types
o Variable Declaration

o Data Types
e 3. Strings

e 4. Control Flow
o |f-Else Statements
o Match (Switch Alternative)

e 5. Loops
o For Loop

o While Loop
o Infinite Loop (Loop + Break)

¢ 6. Functions
e 7. Arrays and Tuples

o Arrays

o Tuples
e 8. Structs (Custom Data Types)
e 9. Enums

¢ 10. Option and Result (Error Handling)
o Option
o Result

e 11. Vectors (Dynamic Arrays)

e 12. Ownership and Borrowing
o Qwnership (Move Semantics)
o Borrowing (References)

e 13. Mutable References

e 14, Lifetimes

e 15. Traits (Interfaces)

e 16. File I/O

e 17. Modules and Packages




1. Structure of a Rust Program

fn main() {
println!("Hello, World!"); // Print to console

}

2. Variables and Data Types

Variable Declaration

let age = 25; // Immutable by default

let mut height = 5.9; // Mutable variable

const PI: f64 = 3.14159; // Constant (explicit type required)
Data Types

let x: 132 = 10; // Integer (i32, 164, u32, u64)

let y: f64 = 5.8; // Floating point

let is active: bool = true; // Boolean

let grade: char = 'A'; // Character

3. Strings

let s1 = String::from("Hello"); // Growable string

let s2 = "World"; // String slice

let s3 = format! ("{} {}", sl1, s2); // String formatting
println! ("{}", s3); // Output: Hello World



4. Control Flow

If-Else Statements

let age = 18;

if age >= 18 {
println! ("Adult");

} else {
println!("Minor");

}

Match (Switch Alternative)

let number = 3;

match number {

1 => println!("One"),

2 => println!("Two"),

3 => println!("Three"),
=> println!("0Other"),

5. Loops

For Loop

for 1 in 1..=5 {
printiln!("{}", 1i);
}



While Loop

let mut count = 0;

while count < 5 {
println!("{}", count);
count += 1;

Infinite Loop (Loop + Break)

let mut n = 0;

loop {
println!("{}", n);
n += 1;
if n==5 {
break;
}
}

6. Functions

fn add(a: i32, b: 132) -> i32 {
a+b // Implicit return (no semicolon)

}

fn main() {
let result = add(10, 5);
println! ("Sum: {}", result);




7. Arrays and Tuples

Arrays

let numbers = [1, 2, 3, 4, 5];
println! ("{}", numbers[0]); // Access array element

Tuples

let person = ("Alice", 30);
println! ("Name: {}, Age: {}", person.0, person.l);

8. Structs (Custom Data Types)

struct Person {
name: String,
age: u32,

}

fn main() {
let person = Person {
name: String::from("Bob"),

age: 25,
b
println! ("{} is {} years old.", person.name, person.age);
}
9. Enums

enum Direction {
Up,



Down,

Left,

Right,
}

fn move character(dir: Direction) {
match dir {
Direction::Up => println!("Move Up"),
Direction::Down => println!("Move Down"),
Direction::Left => println!("Move Left"),
Direction::Right => println!("Move Right"),

}

fn main() {
move character(Direction::Left);

}

10. Option and Result (Error Handling)

Option
fn divide(a: f64, b: f64) -> Option<f64> {
if b !'=0.0 {
Some(a / b)
} else {
None
}

}

fn main() {
let result = divide(10.0, 2.0);
match result {
Some(value) => println!("Result: {}", value),
None => println!("Cannot divide by zero"),



Result

fn divide(a: f64, b: f64) -> Result<f64, String> {
if b I=0.0 {
Ok(a / b)
} else {
Err(String::from("Division by zero"))
}
}

fn main() {
let result = divide(10.0, 0.0);
match result {
Ok(value) => println!("Result: {}", value),
Err(e) => printin!("Error: {}", e),

11. Vectors (Dynamic Arrays)

let mut nums = vec![1l, 2, 3];
nums.push(4); // Add element
nums.remove(0); // Remove first element

for n in &nums {
printin!("{}", n);
}




12. Ownership and Borrowing

Ownership (Move Semantics)

let sl
let s2

String::from("Hello");
sl; // sl is moved to s2

// printin!("{}", sl); // Error: sl no longer valid
println! ("{}", s2); // s2 owns the value

Borrowing (References)

fn greet(name: &String) {
println! ("Hello, {}", name);
}

fn main() {
let s1 = String::from("Alice");
greet(&sl); // Pass reference
printin!("{}", s1); // sl is still valid

13. Mutable References

fn change(text: &mut String) {
text.push str(" World!");
}

fn main() {
let mut s = String::from("Hello");
change(&mut s); // Mutable borrow
printin!("{}", s); // Hello World!



14. Lifetimes

fn longest<'a>(sl: &'a str, s2: &'a str) -> &'a str {
if sl.len() > s2.len() {
sl
} else {
s2
}

15. Traits (Interfaces)

trait Animal {
fn speak(&self);

}

struct Dog;

impl Animal for Dog {
fn speak(&self) {
println! ("Woof!");
¥
}

fn main() {
let dog = Dog;
dog.speak();




16. File 1/0

use std::fs;

fn main() {
let content = fs::read to string("example.txt")
.expect("Failed to read file");
println!("{}", content);

17. Modules and Packages

mod utils {
pub fn greet(name: &str) {
println! ("Hello, {}!", name);
}
}

fn main() {
utils::greet("Alice");

}



