Table of Contents

“»

e 1. Installation and Setup

o 1.1 Install Node.js

o 1.2 Create a New React App
e 2. Project Structure
» 3. Basic Component Structure
e 4, JSX (JavaScript XML)
* 5. Rendering Components
e 6. Functional vs. Class Components

o Functional Component (Preferred):

o Class Component:
e 7. Props (Properties)
» 8. State (Component State Management)
9. Event Handling
10. Conditional Rendering
11. Lists and Keys
12. Forms in React
13. CSS Styling

o Inline Styling:
o External CSS:

14. React Router (Navigation)
15. Lifecycle Methods (Class Components)
e 16. Hooks (Functional Component Lifecycle)
e 17. Fetch Data (APl Call Example)
e 18. Useful CLI Commands

1. Installation and Setup

1.1 Install Node.js

Download from https://nodejs.org/

1.2 Create a New React App

npx create-react-app my-app

https://nodejs.org/

cd my-app
npm start

* npx - Runs the latest version without installing globally.

2. Project Structure

my-app/
— public/ # Static files (HTML, favicon)
— src/ # React components and logic

— App.js # Main component

—— index.js # Renders App component

—— App.cCssS # Styling

—— index.css
—— package. json # Project dependencies & scripts
—— README.md

3. Basic Component Structure

App.js (Functional Component Example):

import React from 'react’;

function App() {
return (
<div>
<h1l>Hello, React!</hl>
</div>
)i
}

export default App;

4. JSX (JavaScript XML)

e JSX allows HTML to be written within JavaScript.
e Example:

const title = <hl>Welcome to React</hl>;
const element = <div>{title}</div>;

* Notes:
o JSX must return a single parent element.
o Use fragments if needed:

<>
<h1l>Hello</h1l>
<p>World</p>
</>

5. Rendering Components
index.js:

import React from 'react’;
import ReactDOM from 'react-dom';
import App from './App';

ReactDOM. render(
<React.StrictMode>
<App />
</React.StrictMode>,
document.getElementById('root"')

);

* Renders the App component inside the root div from index.html.

6. Functional vs. Class Components

Functional Component (Preferred):

function Greeting() {
return <hl>Hello'!</hl>;

}
Class Component:

import React, { Component } from 'react’;
class Greeting extends Component {

render() {
return <hl>Hello!</hl>;

}

7. Props (Properties)

e Pass Data to Components:

function Welcome(props) {
return <hl>Hello, {props.name}!</hl>;

}

<Welcome name="Alice" />

8. State (Component State Management)

Functional Component with useState (React Hooks):

import React, { useState } from 'react'’;

function Counter() {
const [count, setCount] = useState(0);

return (
<div>
<p>Count: {count}</p>
<button onClick={() => setCount(count +
1) }>Increment</button>
</div>

);

9. Event Handling

function ButtonClick() {
function handleClick() {
alert('Button Clicked!');

}

return <button onClick={handleClick}>Click Me</button>;

10. Conditional Rendering

function Message(props) {
return (
<div>
{props.isLoggedIn ? <hl>Welcome Back!</hl> : <hl>Please
Sign In</h1>}
</div>

);

11. Lists and Keys

const names = ['Alice', 'Bob', 'Charlie'];
const listItems = names.map((name) => <li key={name}>{name}</1i>);

function NamelList() {
return {listItems};

}

12. Forms in React
import React, { useState } from 'react’;

function Form() {
const [value, setValue] = useState('');

const handleSubmit = (e) => {
e.preventDefault();
alert(Submitted: ${value});

b
return (
<form onSubmit={handleSubmit}>
<input
type="text"

value={value}
onChange={(e) => setValue(e.target.value)}
/>
<button type="submit">Submit</button>
</form>

);

13. CSS Styling

Inline Styling:

const headingStyle = {
color: 'blue’',
fontSize: '24px'

¥
<hl style={headingStyle}>Styled Text</hl>
External CSS:

hl {
color: red;

}
App.js:

import './App.css';

14. React Router (Navigation)

npm install react-router-dom
App.js (Routing Example):

import React from 'react';
import { BrowserRouter as Router, Route, Switch, Link } from 'react-
router-dom';

function Home() {
return <hl>Home Page</hl>;

}

function About() {
return <hl>About Page</hl>;
}

function App() {
return (
<Router>
<nav>
<Link to="/">Home</Link>
<Link to="/about">About</Link>
</nav>
<Switch>
<Route exact path="/" component={Home} />
<Route path="/about" component={About} />
</Switch>
</Router>
)i

15. Lifecycle Methods (Class Components)

class Lifecycle extends React.Component {
componentDidMount () {
console.log('Component Mounted');

}

componentDidUpdate() {
console.log('Component Updated');
}

componentWillUnmount() {
console.log('Component Unmounted');

}

render() {
return <hl>Lifecycle Demo</hl>;

16. Hooks (Functional Component Lifecycle)
import React, { useEffect } from 'react’';

function Example() {
useEffect(() => {
console.log('Component Mounted');

return () => {
console.log('Component Unmounted');

};
Y, (1)

return <hl>Using useEffect</hl>;

17. Fetch Data (API Call Example)

import React, { useState, useEffect } from 'react';

function DataFetcher() {
const [data, setData] = useState([]);

useEffect(() => {
fetch('https://jsonplaceholder.typicode.com/posts')
.then((response) => response.json())
.then((data) => setData(data));

b 0D

return (

{data.map((item) => (
<li key={item.id}>{item.title}</1li>
))}

);

18. Useful CLI Commands

npm start # Start development server
npm run build # Create production build
npm test # Run tests

npm install <package> # Install package
npm uninstall <package> # Uninstall package

