Table of Contents

e 1. Installation

e 2. Import PyTorch

e 3. Tensors

* 4. Tensor Operations

e 5. Autograd (Automatic Differentiation)
e 6. Neural Network Basics

e 7. Loss and Optimizer

e 8. Training a Neural Network

9. Loading Data (Datasets & Dataloaders)
10. GPU Acceleration

11. Saving and Loading Models

12. Testing the Model

13. Common PyTorch Functions

14. Plotting with PyTorch

15. Example: Linear Regression

1. Installation

pip install torch torchvision torchaudio
Verify Installation:

import torch
print(torch. version)

2. Import PyTorch

import torch

import torch.nn as nn
import torch.optim as optim
import torchvision

3. Tensors

Create Tensors:

X
y = torch.zeros(3)

z = torch.ones(3)

rand = torch.rand(3, 3)

Tensor Shape & Type:

print(x.shape)
print(x.dtype)

Reshape Tensors:

x = torch.rand(4, 4)
X_reshaped = x.view(2, 8)

4. Tensor Operations

a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])

Basic Operations
=a+b

=a*hb

= torch.dot(a, b)
torch.sum(a)

-~ 0O o 0 H*

Matrix Multiplication:

x = torch.rand(2, 3)
= torch.rand(3, 2)
torch.mm(x, y)

N <
n

torch.tensor([5.0, 10.0, 15.0])

Zero tensor
Ones tensor
Random tensor

Dot product
Sum of elements

Element-wise Operations:

N <
I

5. Autograd (Automatic Differentiation)

X
y:

y.backward()
print(x.grad)

torch.tensor(2.0, requires grad=True)

= torch.rand(3)
torch.exp(x)
torch.sqrt(x)

X**3 4+ B*x

6. Neural Network Basics

Simple Neural Network:

class Net(nn.Module):
def init (self):

net

def

super(Net, self). init ()
self.fcl = nn.Linear(4, 3)
self.fc2 nn.Linear(3, 1)

forward(self, x):

x = torch.relu(self.fcl(x))

x = torch.sigmoid(self.fc2(x))
return x

Net ()

print(net)

Exponential
Square root

Calculate gradients
dy/dx = 3x%2 + 5

7. Loss and Optimizer

criterion
optimizer

nn.MSELoss () # Mean Squared Error
optim.SGD(net.parameters(), lr=0.01)

8. Training a Neural Network

for epoch in range(100):

optimizer.zero grad() # Zero gradients
outputs = net(x) # Forward pass
loss = criterion(outputs, vy) # Compute loss
loss.backward() # Backward pass
optimizer.step() # Update weights

9. Loading Data (Datasets & Dataloaders)
from torchvision import datasets, transforms

transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))

1)
train data = datasets.MNIST(root='./data', train=True, download=True,
transform=transform)

train loader = torch.utils.data.DatalLoader(dataset=train data,
batch size=64, shuffle=True)

10. GPU Acceleration

device = torch.device('cuda' if torch.cuda.is available() else 'cpu')

model = Net().to(device)

11. Saving and Loading Models

Save Model
torch.save(net.state dict(), 'model.pth')

Load Model
model = Net()
model.load state dict(torch.load('model.pth'))
model.eval()

12. Testing the Model

with torch.no grad():
for data in train_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs, 1)

13. Common PyTorch Functions

Function Description
torch.tensor() Creates a tensor.
torch.rand() Random tensor.
torch.zeros() Zero tensor.
torch.ones() Ones tensor.
torch.mm() Matrix multiplication.
torch.sum() Sum of elements.
torch.cat() Concatenate tensors

Function Description
torch.max() Maximum value.
torch.mean() Mean value.
torch.relu() ReLU activation function.

14. Plotting with PyTorch

import matplotlib.pyplot as plt

x = torch.linspace(-10, 10, 100)
y = torch.sin(x)

plt.plot(x.numpy(), y.numpy())
plt.title('Sine Wave')
plt.show()

15. Example: Linear Regression

Data
x = torch.rand (100, 1)
y =3 * x + 2 + torch.randn(100, 1) * 0.1

Model

model = nn.Linear(1l, 1)

criterion = nn.MSELoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)

Training Loop

for epoch in range(500):
y pred = model(x)
loss = criterion(y pred, y)
optimizer.zero grad()
loss.backward()
optimizer.step()

Visualization
plt.scatter(x.numpy(), y.numpy())

plt.plot(x.numpy(), y pred.detach().numpy(), color='red")

plt.title('Linear Regression with PyTorch')
plt.show()

