
Pandas is a powerful Python library for data manipulation, analysis, and
visualization.

Table of Contents

1. Installing and Importing Pandas
2. Creating DataFrames and Series

Create a DataFrame from a Dictionary
Create a Series

3. Reading and Writing Data
Read CSV File
Write to CSV
Read Excel File
Read JSON

4. DataFrame Overview
5. Selecting Data

Select Columns
Select Rows by Index

6. Filtering Data
7. Adding and Modifying Data

Add New Column
Modify Values
Apply Functions

8. Dropping Data
9. Sorting Data
10. Handling Missing Data

Check for Missing Values
Drop Missing Values
Fill Missing Values

11. Aggregation and Grouping
12. Merging and Joining DataFrames

Concatenate DataFrames
Merge DataFrames (SQL-like joins)

13. Pivot Tables
14. Working with Dates

15. Exporting Data
16. Common DataFrame Operations
17. Visualization with Pandas

Tips for Learning Pandas

1. Installing and Importing Pandas
pip install pandas

import pandas as pd

2. Creating DataFrames and Series

Create a DataFrame from a Dictionary

data = {
 'Name': ['Alice', 'Bob', 'Charlie'],
 'Age': [25, 30, 35],
 'City': ['NY', 'LA', 'SF']
}
df = pd.DataFrame(data)

Create a Series

s = pd.Series([1, 2, 3, 4])

3. Reading and Writing Data

Read CSV File

df = pd.read_csv('data.csv')

Write to CSV

df.to_csv('output.csv', index=False)

Read Excel File

df = pd.read_excel('data.xlsx')

Read JSON

df = pd.read_json('data.json')

4. DataFrame Overview
df.head() # First 5 rows
df.tail() # Last 5 rows
df.info() # Info about DataFrame
df.describe() # Summary statistics
df.shape # Shape (rows, columns)
df.columns # Column names
df.index # Row indices

5. Selecting Data

Select Columns

df['Name'] # Single column
df[['Name', 'Age']] # Multiple columns

Select Rows by Index

df.loc[0] # Select row by label
df.iloc[0] # Select row by index
df.loc[0:2] # Slice rows by label
df.iloc[0:2] # Slice rows by position

6. Filtering Data
df[df['Age'] > 30] # Filter rows
df[(df['Age'] > 25) & (df['City'] == 'NY')] # Multiple conditions
df.query('Age > 25') # Query method

7. Adding and Modifying Data

Add New Column

df['Salary'] = [70000, 80000, 90000]

Modify Values

df['Age'] = df['Age'] + 1

Apply Functions

df['Age'] = df['Age'].apply(lambda x: x + 5)

8. Dropping Data
df.drop('Salary', axis=1, inplace=True) # Drop column
df.drop(1, axis=0, inplace=True) # Drop row

9. Sorting Data
df.sort_values(by='Age', ascending=False)

10. Handling Missing Data

Check for Missing Values

df.isnull().sum()

Drop Missing Values

df.dropna()

Fill Missing Values

df['Age'].fillna(df['Age'].mean(), inplace=True)

11. Aggregation and Grouping
df.groupby('City')['Age'].mean() # Group by and aggregate
df.groupby('City').agg({'Age': 'max', 'Salary': 'mean'}) # Multiple
aggregations

12. Merging and Joining DataFrames

Concatenate DataFrames

pd.concat([df1, df2], axis=0) # Vertical (rows)
pd.concat([df1, df2], axis=1) # Horizontal (columns)

Merge DataFrames (SQL-like joins)

pd.merge(df1, df2, on='ID') # Inner join by default
pd.merge(df1, df2, on='ID', how='left') # Left join

13. Pivot Tables
df.pivot_table(index='City', values='Salary', aggfunc='mean')

14. Working with Dates
df['Date'] = pd.to_datetime(df['Date'])
df['Year'] = df['Date'].dt.year
df['Month'] = df['Date'].dt.month

15. Exporting Data
df.to_csv('output.csv')
df.to_excel('output.xlsx')
df.to_json('output.json')

16. Common DataFrame Operations

Operation Command
Head / Tail df.head() / df.tail()
Shape (Rows, Columns) df.shape
Column Names df.columns
Row and Column Access df.loc[row, col] / df.iloc[row, col]
Sorting by Column df.sort_values(by=’col’)
Filtering df[df[‘col’] > x]
Drop Columns df.drop(‘col’, axis=1)
Fill Missing Data df.fillna(value)
Group By df.groupby(‘col’)

Operation Command
Reset Index df.reset_index(drop=True)

17. Visualization with Pandas
df['Age'].plot(kind='hist') # Histogram
df.plot(kind='line') # Line plot
df.plot(kind='bar') # Bar plot

Tips for Learning Pandas

Practice with Real Data – Use datasets from Kaggle or CSV files.
Understand DataFrame Operations – Master filtering, grouping, and
aggregation.
Explore Pandas Documentation – It has extensive resources and examples.
Combine with Matplotlib/Seaborn – Enhance data visualization.

Pandas is essential for data analysis

