Pandas is a powerful Python library for data manipulation, analysis, and
visualization.

Table of Contents

-
v

e 1. Installing and Importing Pandas
e 2. Creating DataFrames and Series
o Create a DataFrame from a Dictionary
o Create a Series
e 3. Reading and Writing Data
o Read CSV File
o Write to CSV
o Read Excel File
o Read JSON
e 4. DataFrame Overview
e 5. Selecting Data
o Select Columns
o Select Rows by Index
e 6. Filtering Data
e 7. Adding and Modifying Data
o Add New Column
o Modify Values
o Apply Functions
* 8. Dropping Data
¢ 9, Sorting Data
10. Handling Missing Data
o Check for Missing Values
o Drop Missing Values
o Fill Missing Values
11. Aggregation and Grouping
12. Merging and Joining DataFrames
o Concatenate DataFrames
o Merge DataFrames (SQL-like joins)
13. Pivot Tables
14. Working with Dates




e 15. Exporting Data
¢ 16. Common DataFrame Operations
e 17. Visualization with Pandas

o Tips for Learning Pandas

1. Installing and Importing Pandas

pip install pandas

import pandas as pd

2. Creating DataFrames and Series

Create a DataFrame from a Dictionary

data = {
"Name': ['Alice', 'Bob', 'Charlie'],
"Age': [25, 30, 35],
"City': ['NY', 'LA', 'SF']

}

df = pd.DataFrame(data)

Create a Series

s = pd.Series([1, 2, 3, 4])

3. Reading and Writing Data

Read CSV File

df = pd.read csv('data.csv')



Write to CSV
df.to csv('output.csv', index=False)

Read Excel File

df = pd.read excel('data.xlsx"')

Read JSON

df = pd.read json('data.json')

4. DataFrame Overview

df.head() # First 5 rows
df.tail() # Last 5 rows

df.info() # Info about DataFrame
df.describe() # Summary statistics
df.shape # Shape (rows, columns)
df.columns # Column names
df.index # Row indices

5. Selecting Data

Select Columns

df['Name"' ] # Single column
df[['Name', 'Age'l]] # Multiple columns

Select Rows by Index

df.loc[0] # Select row by label
df.iloc[0] # Select row by index
df.loc[0:2] # Slice rows by label

df.iloc[0:2] # Slice rows by position



6. Filtering Data

df[df['Age'] > 30] # Filter rows
df[(df['Age'] > 25) & (df['City'] == 'NY')] # Multiple conditions
df.query('Age > 25'") # Query method

7. Adding and Modifying Data

Add New Column

df['Salary'] = [70000, 80000, 90000]
Modify Values

df['Age'] = df['Age'] + 1

Apply Functions

df['Age'] = df['Age'].apply(lambda x: x + 5)

8. Dropping Data

df.drop('Salary', axis=1, inplace=True) # Drop column
df.drop(l, axis=0, inplace=True) # Drop row

9. Sorting Data

df.sort values(by='Age', ascending=False)



10. Handling Missing Data

Check for Missing Values
df.isnull().sum()

Drop Missing Values
df.dropna()

Fill Missing Values

df['Age'].fillna(df['Age'].mean(), inplace=True)

11. Aggregation and Grouping

df.groupby('City')['Age'].mean() # Group by and aggregate
df.groupby('City').agg({'Age': 'max', 'Salary': 'mean'}) # Multiple
aggregations

12. Merging and Joining DataFrames

Concatenate DataFrames

pd.concat([dfl, df2], axis=0) # Vertical (rows)
pd.concat([dfl, df2], axis=1) # Horizontal (columns)

Merge DataFrames (SQL-like joins)

pd.merge(dfl, df2, on="ID') # Inner join by default
pd.merge(dfl, df2, on="'ID', how='left') # Left join



13. Pivot Tables

df.pivot table(index='City', values='Salary', aggfunc='mean')

14. Working with Dates

df['Date'] pd.to datetime(df['Date'])
df['Year'] df['Date'].dt.year
df['Month'] = df['Date'].dt.month

15. Exporting Data

df.to csv('output.csv')
df.to excel('output.xlsx"')
df.to json('output.json')

16. Common DataFrame Operations

Operation Command
Head / Tail df.head() / df.tail()
Shape (Rows, Columns) df.shape
Column Names df.columns
Row and Column Access df.loc[row, col] / df.iloc[row, col]
Sorting by Column df.sort_values(by='col’)
Filtering df[df[‘col’] > x]
Drop Columns df.drop(‘col’, axis=1)
Fill Missing Data df.fillna(value)

Group By df.groupby(‘col’)



Operation Command
Reset Index df.reset_index(drop=True)

17. Visualization with Pandas

df['Age'].plot(kind="hist") # Histogram
df.plot(kind="'1line") # Line plot
df.plot(kind="bar") # Bar plot

Tips for Learning Pandas
e Practice with Real Data - Use datasets from Kaggle or CSV files.
e Understand DataFrame Operations - Master filtering, grouping, and

aggregation.
e Explore Pandas Documentation - It has extensive resources and examples.

e Combine with Matplotlib/Seaborn - Enhance data visualization.

Pandas is essential for data analysis



