
Numerical Python (NumPy) is a powerful library for numerical computations in
Python.

Table of Contents

1. Installing and Importing NumPy
2. Creating Arrays

1D Array
2D Array (Matrix)
Zeros, Ones, and Identity Matrix
Range and Linspace

3. Array Properties
4. Reshaping and Flattening Arrays
5. Indexing and Slicing

Basic Indexing
Slicing
Conditional Indexing

6. Mathematical Operations
Element-wise Operations
Aggregate Functions

7. Matrix Operations
8. Random Numbers
9. Copying and Broadcasting

Copying Arrays
Broadcasting

10. Useful NumPy Functions
11. Saving and Loading Data
12. Handling Missing Values
13. Boolean Operations
14. Performance Tips

Tips for Learning NumPy

1. Installing and Importing NumPy
pip install numpy

import numpy as np

2. Creating Arrays

1D Array

arr = np.array([1, 2, 3, 4])

2D Array (Matrix)

arr2d = np.array([[1, 2], [3, 4]])

Zeros, Ones, and Identity Matrix

np.zeros((3, 3)) # 3x3 array of zeros
np.ones((2, 4)) # 2x4 array of ones
np.eye(3) # 3x3 Identity matrix

Range and Linspace

np.arange(0, 10, 2) # [0, 2, 4, 6, 8]
np.linspace(0, 5, 10) # 10 points between 0 and 5

3. Array Properties
arr.shape # Shape (rows, cols)
arr.size # Total number of elements
arr.ndim # Number of dimensions
arr.dtype # Data type of elements

4. Reshaping and Flattening Arrays
arr.reshape(2, 2) # Reshape to 2x2
arr.flatten() # Flatten to 1D array

5. Indexing and Slicing

Basic Indexing

arr[0] # First element
arr[-1] # Last element
arr2d[1, 1] # Element at row 1, column 1

Slicing

arr[1:3] # Elements from index 1 to 2
arr[:2] # First two elements
arr[::2] # Every second element

Conditional Indexing

arr[arr > 2] # Filter elements greater than 2

6. Mathematical Operations

Element-wise Operations

arr + 2 # Add 2 to each element
arr * 3 # Multiply each element by 3
np.sqrt(arr) # Square root of elements
np.exp(arr) # Exponential of elements

Aggregate Functions

np.sum(arr) # Sum of all elements
np.mean(arr) # Mean
np.min(arr) # Minimum
np.max(arr) # Maximum
np.std(arr) # Standard deviation

7. Matrix Operations
np.dot(arr1, arr2) # Matrix multiplication
np.transpose(arr2d) # Transpose matrix
np.linalg.inv(arr2d) # Inverse of matrix

8. Random Numbers
np.random.rand(3, 3) # Uniform distribution
np.random.randn(3, 3) # Standard normal distribution
np.random.randint(0, 10, (2, 2)) # Random integers between 0 and 10

9. Copying and Broadcasting

Copying Arrays

b = arr.copy() # Independent copy

Broadcasting

arr + np.array([1, 2, 3, 4]) # Broadcasting addition

10. Useful NumPy Functions

Function Description
np.sum(arr) Sum of elements
np.prod(arr) Product of elements
np.cumsum(arr) Cumulative sum
np.cumprod(arr) Cumulative product
np.sort(arr) Sort elements
np.argsort(arr) Indices of sorted elements
np.unique(arr) Unique elements
np.argmax(arr) Index of max value
np.argmin(arr) Index of min value

11. Saving and Loading Data
np.save('array.npy', arr) # Save array to file
loaded_arr = np.load('array.npy') # Load array from file

12. Handling Missing Values
np.nan # Not-a-Number (NaN)
np.isnan(arr) # Check for NaNs
np.nanmean(arr) # Mean ignoring NaNs
np.nansum(arr) # Sum ignoring NaNs

13. Boolean Operations
np.all(arr > 0) # True if all elements > 0
np.any(arr < 0) # True if any element < 0

14. Performance Tips
Use Vectorized Operations – Faster than loops.
Avoid Copying Arrays Unnecessarily – Use views instead.
Preallocate Memory – Use np.empty or np.zeros to initialize large arrays.

Tips for Learning NumPy

Practice Array Manipulation – Experiment with slicing, reshaping, and
broadcasting.
Explore NumPy Documentation – Learn more about advanced functions and
optimizations.
Apply to Real Projects – Use NumPy for data analysis, image processing, and
scientific computing.

NumPy is the foundation of data science and machine learning in Python

