Numerical Python (NumPy) is a powerful library for numerical computations in
Python.

Table of Contents

-
v

e 1. Installing and Importing NumPy
e 2. Creating Arrays
o 1D Array
o 2D Array (Matrix)
o Zeros, Ones, and Identity Matrix
o Range and Linspace
e 3. Array Properties
* 4, Reshaping and Flattening Arrays
e 5. Indexing and Slicing

o Basic Indexing
o Conditional Indexing
* 6. Mathematical Operations
o Element-wise Operations
o Aggregate Functions
e 7. Matrix Operations
e 8. Random Numbers
¢ 9. Copying and Broadcasting
o Copying Arrays
o Broadcasting
10. Useful NumPy Functions
11. Saving and Loading Data
12. Handling Missing Values
13. Boolean Operations
14. Performance Tips
o Tips for Learning NumPy




1. Installing and Importing NumPy

pip install numpy

import numpy as np

2. Creating Arrays

1D Array

arr = np.array([1l, 2, 3, 4])

2D Array (Matrix)

arr2d = np.array([[1, 2], [3, 4]])
Zeros, Ones, and ldentity Matrix

np.zeros((3, 3)) # 3x3 array of zeros
np.ones((2, 4)) # 2x4 array of ones
np.eye(3) # 3x3 Identity matrix

Range and Linspace

np.arange(0, 10, 2) # [0, 2, 4, 6, 8]
np.linspace(0, 5, 10) # 10 points between 0 and 5

3. Array Properties

arr.shape # Shape (rows, cols)
arr.size # Total number of elements
arr.ndim # Number of dimensions

arr.dtype # Data type of elements



4. Reshaping and Flattening Arrays

arr.reshape(2, 2) # Reshape to 2x2
arr.flatten() # Flatten to 1D array

5. Indexing and Slicing

Basic Indexing

arr[0] # First element
arr[-1] # Last element
arr2d[1, 1] # Element at row 1, column 1

Slicing

arr[1:3] # Elements from index 1 to 2
arr[:2] # First two elements
arr[::2] # Every second element

Conditional Indexing

arr[arr > 2] # Filter elements greater than 2

6. Mathematical Operations

Element-wise Operations

arr + 2 # Add 2 to each element

arr * 3 # Multiply each element by 3
np.sqrt(arr) # Square root of elements
np.exp(arr) # Exponential of elements



Aggregate Functions

np.sum(arr) # Sum of all elements
np.mean(arr) # Mean

np.min(arr) # Minimum

np.max(arr) # Maximum

np.std(arr) # Standard deviation

7. Matrix Operations

np.dot(arrl, arr2) # Matrix multiplication
np.transpose(arr2d) # Transpose matrix
np.linalg.inv(arr2d) # Inverse of matrix

8. Random Numbers

np.random.rand(3, 3) # Uniform distribution
np.random.randn(3, 3) # Standard normal distribution
np.random.randint(0, 10, (2, 2)) # Random integers between 0 and 10

9. Copying and Broadcasting
Copying Arrays
b = arr.copy() # Independent copy

Broadcasting

arr + np.array([1l, 2, 3, 4]) # Broadcasting addition



10. Useful NumPy Functions

Function Description
np.sumf(arr) Sum of elements
np.prod(arr) Product of elements

np.cumsum(arr) Cumulative sum
np.cumprod(arr) Cumulative product
np.sort(arr) Sort elements
np.argsort(arr) Indices of sorted elements
np.unique(arr) Unique elements
np.argmax(arr) Index of max value
np.argmin(arr) Index of min value

11. Saving and Loading Data

np.save('array.npy', arr) # Save array to file
loaded arr = np.load('array.npy') # Load array from file

12. Handling Missing Values

np.nan # Not-a-Number (NaN)
np.isnan(arr) # Check for NaNs

np.nanmean(arr) # Mean ignoring NaNs
np.nansum(arr) # Sum ignoring NaNs

13. Boolean Operations

np.all(arr > 0) # True if all elements > 0
np.any(arr < 0) # True if any element < 0



14. Performance Tips

» Use Vectorized Operations - Faster than loops.
e Avoid Copying Arrays Unnecessarily - Use views instead.
e Preallocate Memory - Use np.empty or np.zeros to initialize large arrays.

Tips for Learning NumPy

* Practice Array Manipulation - Experiment with slicing, reshaping, and

broadcasting.

e Explore NumPy Documentation - Learn more about advanced functions and
optimizations.

* Apply to Real Projects - Use NumPy for data analysis, image processing, and
scientific computing.

NumPy is the foundation of data science and machine learning in Python



