Table of Contents

a
v

e 1. Installation
e 2. Running Node.js
e 3. Creating a Basic Node.js App
e 4. Core Modules
¢ 5. Creating an HTTP Server
* 6. File System (fs)
o Reading and Writing Files
e 7. Path Module
e 8. Events and Event Emitters
* 9. NPM (Node Package Manager)
o Install Packages:
o Install as Dev Dependency:
o Uninstall Package:
o Global Installation:
» 10. Package.json Overview
e 11. Express.js (Basic Setup)
e 12. Middleware in Express
e 13. APl Routes (CRUD Example)
e 14. Working with JSON
e 15. Handling Promises
e 16. Asynchronous/Await
e 17. Environment Variables
e 18. Useful Node.js Commands
e 19. Error Handling

¢ 20. Deployment (PM2 Process Manager)

1. Installation

 Download and Install:
https://nodejs.org/
e Check Installation:

node -v # Node.js version
npm -v # npm (Node Package Manager) version

https://nodejs.org/

2. Running Node.js

1.

Interactive Mode (REPL):
node
o Type JavaScript directly into the terminal.

console.log("Hello, Node!");

. Run a Script:

node app.js

3. Creating a Basic Node.js App

1.

Create Project Directory:

mkdir myapp
cd myapp

. Initialize Node Project:

npm init -y

. Create app.js:

console.log("Node.js App Running!");
Run App:

node app.js

4. Core Modules

const fs = require('fs'); // File System
const http = require('http'); // HTTP Server
const path = require('path'); // Path Utilities
const os = require('os'); // 0S Information

const events = require('events'); // Event Emitter

5. Creating an HTTP Server
const http = require('http');

const server = http.createServer((req, res) => {
res.writeHead (200, { 'Content-Type': 'text/plain' });
res.end('Hello, World!"');

});

server.listen(3000, () => {
console.log('Server running at http://localhost:3000/"');

1)
* Visit http://localhost:3000 in your browser.

6. File System (fs)

Reading and Writing Files

const fs = require('fs');

// Read File

fs.readFile('text.txt', 'utf8', (err, data) => {
if (err) throw err;
console.log(data);

});

// Write to File

fs.writeFile('output.txt', 'Hello Node.js!', (err) => {
if (err) throw err;
console.log('File written!"');

});

7. Path Module

const path = require('path');

console.log(dirname); // Directory name
console.log(path.basename(filename)); // File name
console.log(path.join(dirname, ‘src', 'index.html'));

8. Events and Event Emitters

require('events');
new EventEmitter();

const EventEmitter
const eventEmitter

eventEmitter.on('greet', () => {
console.log('Hello, Event!');

});

eventEmitter.emit('greet');

9. NPM (Node Package Manager)

Install Packages:

npm install express

Install as Dev Dependency:
npm install nodemon --save-dev
Uninstall Package:
npm uninstall express
Global Installation:

npm install -g nodemon

10. Package.json Overview

* Dependencies: Packages required for production.
» devDependencies: Packages required during development.

{
"name": "myapp",
"version": "1.0.0",
"main": "app.js",
"dependencies": {
"express": "74.18.1"
}
"scripts": {
"start": "node app.js",
"dev": "nodemon app.js"
}
}

11. Express.js (Basic Setup)

const express = require('express');
const app = express();

app.get('/', (req, res) => {
res.send('Welcome to Express!');

)

app.listen(3000, () => {
console.log('Server running at http://localhost:3000/');

)

12. Middleware in Express
app.use(express.json());

app.use((req, res, next) => {
console.log(${req.method} ${req.url}’);
next();

});

13. API Routes (CRUD Example)

let users = [{ id: 1, name: 'John' }];

app.get('/users', (req, res) => {
res.json(users);

)

app.post('/users', (req, res) => {
const newUser = req.body;
users.push(newUser);
res.status(201).send('User added');

)

14. Working with JSON

const data = {
name: "Node.js",
version: "18.0"

};

const jsonData = JSON.stringify(data); // Convert to JSON
console.log(JSON.parse(jsonData)); // Parse JSON back to object

15. Handling Promises

const fetchData = () => {
return new Promise((resolve, reject) => {
setTimeout(() => resolve('Data Loaded'), 2000);
});
b

fetchData()
.then((data) => console.log(data))
.catch((err) => console.error(err));

16. Asynchronous/Await

async function loadData() {
const data = await fetchData();
console.log(data);

}
loadData();

17. Environment Variables

PORT=3000

require('dotenv').config();
console.log(process.env.PORT);

18. Useful Node.js Commands

node app.js # Run app

nodemon app.js # Auto-reload app (install nodemon globally)
npm start # Run start script

npm run dev # Run dev script

npm list # List installed packages

19. Error Handling

app.use((err, req, res, next) => {
console.error(err.stack);
res.status(500).send('Something broke!');

)

20. Deployment (PM2 Process Manager)

npm install pm2 -g
pm2 start app.js
pm2 list

pm2 stop app

pm2 logs

