Table of Contents

\$

- 1. General Information
- 2. Isotopes of Nitrogen
- 3. Physical Properties
- 4. Chemical Properties
 - Reaction with Hydrogen (Haber Process):
- <u>5. Occurrence and Abundance</u>
- <u>6. The Nitrogen Cycle</u>
- 7. Industrial Production of Nitrogen
- 8. Uses of Nitrogen
- 9. Important Nitrogen Compounds
- 10. Biological Importance of Nitrogen
- 11. Safety and Toxicity
 - Fun Facts About Nitrogen:

1. General Information

• Symbol: N

• Atomic Number: 7

• Atomic Mass: 14.01 u

• Group: 15 (Pnictogens)

• Period: 2

• Block: p-block

• Electron Configuration: 1s² 2s² 2p³

• Valence Electrons: 5

• Phase at Room Temperature: Gas

2. Isotopes of Nitrogen

Isotope Protons Neutrons Abundance Notes

^{14}N	7	7	99.6%	Stable and most common.
^{15}N	7	8	0.4%	Stable, used in research.

3. Physical Properties

Color: ColorlessOdor: Odorless

Density: 1.25 g/L (at STP)
Melting Point: -210°C (63 K)
Boiling Point: -195.8°C (77 K)

• State at STP: Gas

• Non-Metallic and Diatomic: Exists as N2 molecules.

4. Chemical Properties

- Inert at Room Temperature Highly stable and unreactive due to the triple bond in N₂ (N≡N).
- Reacts at High Temperatures: Combines with hydrogen, oxygen, and metals.
- Essential for Proteins and DNA.
- Forms:
 - ∘ Ammonia (NH₃)
 - ∘ Nitric acid (HNO₃)
 - ∘ Nitrates (NO₃⁻)

Reaction with Hydrogen (Haber Process):

```
N_2 + 3H_2 \rightarrow 2NH_3 (Ammonia)
```

5. Occurrence and Abundance

- Most abundant gas in Earth's atmosphere 78% by volume.
- Found in:
 - Organic Matter Proteins and nucleic acids.
 - Soil and Water As nitrates and ammonia.
 - Stars and Interstellar Space In cosmic dust and gases.

6. The Nitrogen Cycle

- Essential for Ecosystems Nitrogen is cycled between the atmosphere, soil, and living organisms.
- Stages:
 - 1. Nitrogen Fixation: $N_2 \rightarrow NH_3$ (by bacteria or lightning).
 - 2. Nitrification: $NH_3 \rightarrow NO_3^-$ (nitrates by bacteria).
 - 3. Assimilation: Plants absorb nitrates to form proteins.
 - 4. Denitrification: $NO_3^- \rightarrow N_2$ (returns to atmosphere).

7. Industrial Production of Nitrogen

- Fractional Distillation: Extracted from liquid air.
- Haber Process: Produces ammonia by reacting nitrogen with hydrogen at high pressure and temperature.

8. Uses of Nitrogen

Application	Description
Fertilizers	Ammonia and nitrates boost plant growth.
Cryogenics	Liquid nitrogen cools medical and industrial equipment.
Food Preservation	Inert atmosphere prevents spoilage.
Electronics	Nitrogen is used to prevent oxidation.

Application Description

Medical Used in pharmaceuticals and freezing tissues.

Explosives Nitrogen compounds like TNT and nitroglycerin.

Welding and Metal Cutting Provides an inert atmosphere.

9. Important Nitrogen Compounds

Compound	Formula	Use
Ammonia	NH_3	Fertilizers, cleaners, refrigerants.
Nitric Acid	HNO_3	Explosives, fertilizers.
Nitrogen Dioxide	NO_2	Air pollutant, precursor to acid rain.
Nitrous Oxide	N_2O	Anesthetic (laughing gas).
Nitrates	NO_3^-	Fertilizers, preservatives.

10. Biological Importance of Nitrogen

- Essential for Life: A key element in amino acids, proteins, and nucleic acids (DNA and RNA).
- Nitrogen Fixation: Bacteria convert atmospheric nitrogen into usable forms for plants.
- Protein Synthesis: Nitrogen is crucial for the growth and repair of cells.

11. Safety and Toxicity

- Inert Gas Asphyxiation: Displaces oxygen, posing asphyxiation risks in confined spaces.
- Nitrogen Dioxide (NO₂): Toxic and can cause respiratory problems.
- Liquid Nitrogen: Can cause severe frostbite upon contact.

Fun Facts About Nitrogen:

- Nitrogen gas is colorless, odorless, and tasteless.
- Liquid nitrogen can freeze objects instantly.
- Lightning naturally fixes nitrogen by converting N2 into nitrates.
- DNA, proteins, and chlorophyll all contain nitrogen.