
Table of Contents

1. Introduction to Java
2. Setup and Running Java
3. Java Program Structure
4. Variables and Data Types

Primitive Data Types
Non-Primitive Types

5. Control Structures
1. Conditional Statements
2. Switch Statement
3. Loops

6. Arrays
7. Methods (Functions)
8. Object-Oriented Programming (OOP)

1. Class and Object
2. Inheritance
3. Polymorphism
4. Encapsulation

9. Exception Handling
10. File I/O
Useful Commands and Shortcuts

Tips for Java Development

1. Introduction to Java
Java is a high-level, object-oriented programming language.
Known for Write Once, Run Anywhere (WORA) – Java code can run on any
platform with a Java Virtual Machine (JVM).
Used for web development, mobile apps (Android), desktop applications, and
enterprise systems.

2. Setup and Running Java
Install Java Development Kit (JDK):1.

Download from Oracle.
Verify Installation:2.

java -version
javac -version

Run a Java Program:3.

javac HelloWorld.java # Compile
java HelloWorld # Run

3. Java Program Structure
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }
}

public class HelloWorld – Defines a class.
public static void main(String[] args) – Main method, program entry point.
System.out.println – Prints to the console.

4. Variables and Data Types

Primitive Data Types

Type Size Example
byte 8-bit byte b = 100;
short 16-bit short s = 32000;
int 32-bit int i = 12345;

https://www.oracle.com/java/technologies/javase-downloads.html

Type Size Example
long 64-bit long l = 123456789L;
float 32-bit float f = 5.75f;
double 64-bit double d = 19.99;
char 16-bit char c = ‘A’;
boolean 1-bit boolean isTrue = true;

Non-Primitive Types

String: String name = “Java”;
Array: int[] arr = {1, 2, 3};
Object: MyClass obj = new MyClass();

5. Control Structures

1. Conditional Statements

int x = 10;
if (x > 0) {
 System.out.println("Positive");
} else if (x == 0) {
 System.out.println("Zero");
} else {
 System.out.println("Negative");
}

2. Switch Statement

int day = 3;
switch (day) {
 case 1 -> System.out.println("Monday");
 case 2 -> System.out.println("Tuesday");
 default -> System.out.println("Other Day");
}

3. Loops

For Loop:

for (int i = 1; i <= 5; i++) {
 System.out.println(i);
}

While Loop:

int i = 1;
while (i <= 5) {
 System.out.println(i);
 i++;
}

Do-While Loop:

int i = 1;
do {
 System.out.println(i);
 i++;
} while (i <= 5);

6. Arrays
int[] numbers = {10, 20, 30, 40};
System.out.println(numbers[0]); // Access element
numbers[1] = 25; // Modify element

Array Length: numbers.length
Iterate Array:

for (int num : numbers) {
 System.out.println(num);
}

7. Methods (Functions)
public class Calculator {
 public static int add(int a, int b) {
 return a + b;
 }

 public static void main(String[] args) {
 int result = add(5, 3);
 System.out.println(result);
 }
}

add – Custom method.
Return Type: int (returns integer).
void – No return value.

8. Object-Oriented Programming (OOP)

1. Class and Object

public class Car {
 String brand;
 int speed;

 // Constructor
 public Car(String brand, int speed) {
 this.brand = brand;
 this.speed = speed;
 }

 public void drive() {
 System.out.println(brand + " is driving at " + speed + "
km/h");

 }
}

public class Main {
 public static void main(String[] args) {
 Car myCar = new Car("Toyota", 120);
 myCar.drive();
 }
}

2. Inheritance

class Animal {
 void sound() {
 System.out.println("Animal makes a sound");
 }
}

class Dog extends Animal {
 void sound() {
 System.out.println("Dog barks");
 }
}

3. Polymorphism

Animal myDog = new Dog();
myDog.sound(); // Dog barks

4. Encapsulation

public class Person {
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String newName) {
 this.name = newName;
 }
}

9. Exception Handling
try {
 int result = 10 / 0;
} catch (ArithmeticException e) {
 System.out.println("Cannot divide by zero");
} finally {
 System.out.println("End of try-catch");
}

10. File I/O
import java.io.*;

public class FileExample {
 public static void main(String[] args) {
 try {
 FileWriter writer = new FileWriter("example.txt");
 writer.write("Hello Java");
 writer.close();
 } catch (IOException e) {
 System.out.println("Error occurred");
 }
 }
}

Useful Commands and Shortcuts

Command Description
javac FileName.java Compile Java code
java FileName Run compiled code
System.out.println() Print output
Ctrl + Shift + / Multi-line comment
Ctrl + Space Auto-complete

Tips for Java Development

Practice OOP Concepts – Master classes, inheritance, and polymorphism.
Work with APIs – Java has vast libraries like Spring and Hibernate.
Understand JVM – Knowing how the JVM works will improve debugging and
performance tuning.

