Helium (He) - The Lightest Noble Gas and the Second Most Abundant Element in the Universe

Table of Contents

\$

- 1. General Information
- 2. Isotopes of Helium
- 3. Physical Properties
- 4. Chemical Properties
- 5. Occurrence and Abundance
- 6. Production and Extraction
- 7. Uses of Helium
- 8. Unique Properties of Helium
- 9. Helium and Space Exploration
- 10. Safety and Handling
 - Fun Facts About Helium:

1. General Information

• Symbol: He

• Atomic Number: 2

• Atomic Mass: 4.0026 u

• Group: 18 (Noble Gases)

• Period: 1

• Block: s-block

• Electron Configuration: 1s²

• Valence Electrons: 2

• Phase at Room Temperature: Gas

2. Isotopes of Helium

Isotope Protons Neutrons Abundance

³He 2 1 Trace (Rare) ⁴He 2 2 99.999%

• ⁴He is produced by nuclear fusion in stars and during the radioactive decay of heavy elements (alpha decay).

3. Physical Properties

Color: ColorlessOdor: Odorless

• Density: 0.1786 g/L (at STP)

• Melting Point: Does not solidify at standard pressure.

• Boiling Point: -268.93°C (4.2 K)

• State at STP: Gas

• Inert and Non-Flammable - Helium does not readily react with other elements.

4. Chemical Properties

- Inert: Helium is part of the noble gases and is chemically non-reactive.
- Non-Toxic and Non-Flammable Safe to use in various applications.
- Monoatomic Gas (He): Helium exists as single atoms under normal conditions.

5. Occurrence and Abundance

- Second most abundant element in the universe (after hydrogen).
- On Earth:
 - \circ Found in natural gas deposits.
 - Formed through alpha particle decay of radioactive elements in the Earth's crust.

• Extracted by fractional distillation of liquefied natural gas (LNG).

6. Production and Extraction

Method Description

Fractional Distillation Extracted from natural gas where helium is concentrated.

Nuclear Reactions Produced as a byproduct of radioactive decay (alpha decay).

Star Fusion Created in massive quantities in stars through nuclear fusion.

7. Uses of Helium

Application Description

Cryogenics Cooling superconducting magnets (e.g., MRI machines).

Balloons and Blimps Non-flammable and lighter than air.

Pressurizing Agent Used in rocket fuel tanks.

Diving and Breathing Mixtures Heliox (Helium + Oxygen) prevents nitrogen narcosis.

Electronics and Fiber Optics Used to create inert atmospheres.

Scientific Research Superfluid studies at near absolute zero.

Welding Inert gas for arc welding.

8. Unique Properties of Helium

- Lowest Boiling Point of Any Element: 4.2 K (-268.93°C).
- Cannot Solidify at Normal Pressure: Even at absolute zero, helium remains a liquid unless under high pressure.
- Superfluid Helium (²He): Helium exhibits zero viscosity at temperatures near absolute zero, allowing it to flow without friction.
- Second Lightest Element Only hydrogen is lighter.

9. Helium and Space Exploration

- Rocket Fuel Purge: Helium is used to pressurize and purge fuel tanks in rockets.
- Cooling Systems: Essential for cooling space instruments and satellites.
- Balloon Flights: Used for high-altitude weather balloons.

10. Safety and Handling

- Non-Toxic and Safe to Inhale in Small Quantities But excessive inhalation displaces oxygen, causing suffocation.
- Asphyxiation Risk: In confined spaces, helium can cause oxygen displacement.
- Storage: Stored in pressurized cylinders and cryogenic tanks.

Fun Facts About Helium:

- Helium was discovered on the Sun before being found on Earth (spectroscopy in 1868).
- Helium makes your voice high-pitched because it travels faster through the vocal cords.
- Stars constantly produce helium through nuclear fusion, turning hydrogen into helium.