
Table of Contents

1. Introduction to Golang
2. Setup and Running Go
3. Basic Go Program Structure
4. Variables and Data Types

Variable Declaration
Data Types

5. Constants
6. Control Structures

If-Else
Switch Statement

7. Loops
For Loop (No While in Go)
Infinite Loop
Range Loop (Iterate Over Arrays/Maps)

8. Arrays and Slices
Arrays
Slices (Dynamic Arrays)

9. Maps (Dictionaries)
10. Functions
11. Pointers
12. Structs (Custom Types)
13. Methods (Struct Functions)
14. Interfaces (Abstraction)
15. Error Handling
16. Goroutines (Concurrency)
17. Channels (Goroutine Communication)
18. File I/O
19. Packages
20. Useful Go Commands

Tips for Learning Go

1. Introduction to Golang
Go (Golang) is an open-source programming language developed by Google.
Known for simplicity, efficiency, and concurrency support.
Designed for scalable and high-performance applications.

2. Setup and Running Go
Download and Install Go:1.

Download Go.
Verify Installation:2.

go version

Run Go Program:3.

go run main.go

Build Executable:4.

go build main.go

3. Basic Go Program Structure
package main

import "fmt"

func main() {
 fmt.Println("Hello, World!")
}

package main – Defines the entry point.
import “fmt” – Imports the fmt package for I/O.
func main() – Main function, program execution starts here.

https://golang.org/dl/

4. Variables and Data Types

Variable Declaration

var name string = "GoLang"
var age int = 25
isTrue := true // Short-hand declaration

Data Types

Type Example
string var s string = “Hello”
int var i int = 10
float64 var f float64 = 9.8
bool var b bool = true
byte var b byte = ‘A’
rune var r rune = ‘♥’

5. Constants
const Pi = 3.14
const Greeting = "Welcome to Go"

6. Control Structures

If-Else

if age > 18 {
 fmt.Println("Adult")
} else {
 fmt.Println("Minor")

}

Switch Statement

switch day := 3; day {
case 1:
 fmt.Println("Monday")
case 2, 3:
 fmt.Println("Midweek")
default:
 fmt.Println("Other day")
}

7. Loops

For Loop (No While in Go)

for i := 1; i <= 5; i++ {
 fmt.Println(i)
}

Infinite Loop

for {
 fmt.Println("Running...")
 break
}

Range Loop (Iterate Over Arrays/Maps)

nums := []int{1, 2, 3}
for index, value := range nums {
 fmt.Println(index, value)
}

8. Arrays and Slices

Arrays

var arr [3]int = [3]int{10, 20, 30}
fmt.Println(arr[0]) // Access element

Slices (Dynamic Arrays)

nums := []int{1, 2, 3}
nums = append(nums, 4)
fmt.Println(nums)

9. Maps (Dictionaries)
person := map[string]string{
 "name": "John",
 "city": "New York",
}
fmt.Println(person["name"]) // Access value

10. Functions
func add(a int, b int) int {
 return a + b
}

func main() {
 result := add(5, 3)
 fmt.Println(result)
}

Multiple Return Values

func divide(x, y int) (int, int) {

 return x / y, x % y
}

11. Pointers
x := 10
p := &x // Pointer to x
fmt.Println(*p) // Dereference to get value

12. Structs (Custom Types)
type Car struct {
 Brand string
 Speed int
}

func main() {
 myCar := Car{"Toyota", 120}
 fmt.Println(myCar.Brand)
}

13. Methods (Struct Functions)
func (c Car) Drive() {
 fmt.Println(c.Brand, "is driving at", c.Speed, "km/h")
}

14. Interfaces (Abstraction)
type Vehicle interface {
 Drive()
}

type Bike struct{}
func (b Bike) Drive() {
 fmt.Println("Bike is driving")
}

15. Error Handling
func divide(x, y int) (int, error) {
 if y == 0 {
 return 0, fmt.Errorf("division by zero")
 }
 return x / y, nil
}

16. Goroutines (Concurrency)
func sayHello() {
 fmt.Println("Hello")
}

func main() {
 go sayHello() // Run concurrently
 fmt.Println("Main function")
}

17. Channels (Goroutine Communication)
ch := make(chan int)

go func() {
 ch <- 10 // Send data
}()

x := <-ch // Receive data
fmt.Println(x)

18. File I/O
import (
 "os"
)

func main() {
 file, _ := os.Create("example.txt")
 file.WriteString("Hello, Go!")
 file.Close()
}

19. Packages
import "math"

func main() {
 result := math.Sqrt(16)
 fmt.Println(result)
}

20. Useful Go Commands

Command Description
go run file.go Run Go code
go build file.go Compile Go code
go fmt Format Go code
go mod init module_name Initialize Go module
go test Run tests
go doc fmt.Println Show documentation

Tips for Learning Go

Focus on Simplicity – Go emphasizes readability and simplicity.
Use Goroutines – Concurrency is Go’s strength.
Practice Error Handling – Explicit error checking is encouraged.
Leverage Interfaces – They provide flexibility without deep inheritance.
Explore Standard Library – Go’s standard library is powerful and covers most
tasks.

