Table of Contents

a
v

e 1. Introduction to Golang
e 2. Setup and Running Go
e 3. Basic Go Program Structure
* 4. Variables and Data Types
o Variable Declaration
o Data Types
¢ 5. Constants
e 6. Control Structures
o If-Else
o Switch Statement

e 7. Loops
o For Loop (No While in Go)

o Infinite Loop
o Range Loop (Iterate Over Arrays/Maps)
e 8. Arrays and Slices
o Arrays
o Slices (Dynamic Arrays)
9. Maps (Dictionaries)
10. Functions
11. Pointers
12. Structs (Custom Types)
e 13. Methods (Struct Functions)
e 14. Interfaces (Abstraction)
e 15. Error Handling
* 16. Goroutines (Concurrency)
e 17. Channels (Goroutine Communication)
» 18. File I/O
» 19. Packages
e 20. Useful Go Commands
o Tips for Learning Go




1. Introduction to Golang

* Go (Golang) is an open-source programming language developed by Google.
e Known for simplicity, efficiency, and concurrency support.
» Designed for scalable and high-performance applications.

2. Setup and Running Go

1. Download and Install Go:
o Download Go.
2. Verify Installation:

go version
3. Run Go Program:
go run main.go
4. Build Executable:

go build main.go

3. Basic Go Program Structure
package main
import "fmt"

func main() {
fmt.Println("Hello, World!")

}

» package main - Defines the entry point.
e import “fmt” - Imports the fmt package for I/O.
e func main() - Main function, program execution starts here.


https://golang.org/dl/

4. Variables and Data Types

Variable Declaration

var name string = "GolLang"
var age int = 25
isTrue := true // Short-hand declaration

Data Types

Type Example
string var s string = “Hello”
int variint =10

float64 var f float64 = 9.8
bool var b bool = true
byte var b byte = ‘A’

rune varrrune ="'’

5. Constants

const Pi = 3.14
const Greeting = "Welcome to Go"

6. Control Structures

If-Else

if age > 18 {
fmt.Println("Adult")

} else {
fmt.Println("Minor")



}
Switch Statement

switch day := 3; day {
case 1:
fmt.Println("Monday")
case 2, 3:
fmt.Println("Midweek")
default:
fmt.Println("Other day")

}

7. Loops

For Loop (No While in Go)

for i := 1; i <= 5; i++ {
fmt.Println(1i)
}

Infinite Loop

for {
fmt.Println("Running...")
break

}

Range Loop (lterate Over Arrays/Maps)

nums := []int{l, 2, 3}
for index, value := range nums {
fmt.Println(index, value)

}



8. Arrays and Slices

Arrays

var arr [3]int = [3]int{10, 20, 30}
fmt.Println(arr[0]) // Access element

Slices (Dynamic Arrays)

nums := []int{1l, 2, 3}
nums = append(nums, 4)
fmt.Println(nums)

9. Maps (Dictionaries)

person := map[string]string{
“name": "John",
"city": "New York",

}

fmt.Println(person["name"]) // Access value

10. Functions

func add(a int, b int) int {
return a + b

}

func main() {
result := add(5, 3)
fmt.Println(result)

e Multiple Return Values

func divide(x, y int) (int, int) {



return x / y, X%y

11. Pointers

X 10
p := & // Pointer to x
fmt.Println(*p) // Dereference to get value

12. Structs (Custom Types)

type Car struct {
Brand string
Speed int

}

func main() {
myCar := Car{"Toyota", 120}
fmt.Printin(myCar.Brand)

13. Methods (Struct Functions)

func (c Car) Drive() {
fmt.Println(c.Brand, "is driving at", c.Speed,

}

"km/h")



14. Interfaces (Abstraction)

type Vehicle interface {
Drive()

}

type Bike struct{}
func (b Bike) Drive() {
fmt.Println("Bike is driving")

}

15. Error Handling

func divide(x, y int) (int, error) {
ify=20/{
return 0, fmt.Errorf("division by zero")

}

return x / vy, nil

16. Goroutines (Concurrency)

func sayHello() {
fmt.Println("Hello")

}

func main() {
go sayHello() // Run concurrently
fmt.Println("Main function")



17. Channels (Goroutine Communication)
ch := make(chan int)

go func() {
ch <- 10 // Send data

3H()

X := <-ch // Receive data
fmt.Println(x)

18. File 1/O

import (
IIOSII

)

func main() {
file, := os.Create("example.txt")
file.WriteString("Hello, Go!")
file.Close()

19. Packages
import "math"
func main() {

result := math.Sqrt(16)
fmt.Println(result)



20. Useful Go Commands

Command Description
go run file.go Run Go code
go build file.go Compile Go code
go fmt Format Go code
go mod init module_name Initialize Go module
go test Run tests
go doc fmt.Printin Show documentation

Tips for Learning Go

e Focus on Simplicity - Go emphasizes readability and simplicity.

Use Goroutines - Concurrency is Go’s strength.

Practice Error Handling - Explicit error checking is encouraged.

Leverage Interfaces - They provide flexibility without deep inheritance.

» Explore Standard Library - Go’s standard library is powerful and covers most
tasks.



