Table of Contents

a
v

e 1. Installation

e 2. Create a Simple Express App (Manual Setup)
e 3. Basic Routing

e 4. Middleware

e 5, Static Files

e 6. Handling Form Data (POST)

e 7. Error Handling

» 8. Templating (EJS Setup)

¢ 9. JSON Response

e 10. Redirects

11. Route Grouping (Router)

12. File Upload (Multer)

13. Connect to MongoDB (Mongoose)
14. APl Example (CRUD Operations)
15. Useful Middleware

16. Common Commands

1. Installation

Prerequisites:

* Install Node.js from https://nodejs.org/

Install Express Globally:

npm install express-generator -g
Create Express App:

express myapp

cd myapp

npm install
npm start

https://nodejs.org/

2. Create a Simple Express App (Manual Setup)

1. Initialize Project:

mkdir myapp

cd myapp

npm init -y

npm install express

2. Create index.js:

const express = require('express');
const app = express();
const PORT = 3000;

// Basic Route
app.get('/', (req, res) => {
res.send('Hello, Express!');

});

// Start Server
app.listen(PORT, () => {

console.log(Server running at http://localhost:${PORT});
});

3. Run App:
node index.js

* Visit http://localhost:3000

3. Basic Routing

app.get('/', (req, res) => {
res.send('Home Page');

)

app.post('/submit', (req, res) => {
res.send('Form Submitted');

)

app.put('/update', (req, res) => {
res.send('Data Updated');
});

app.delete('/delete', (req, res) => {
res.send('Data Deleted');

});

* Route Parameters:

app.get('/user/:id', (req, res) => {
res.send(User ID: ${req.params.id});

});

* Query Parameters:

app.get('/search', (req, res) => {
res.send(Query: ${req.query.q});
1)

4. Middleware

Built-in Middleware:

app.use(express.json()); // Parse JSON
app.use(express.urlencoded({ extended: true })); // Parse URL-encoded
data

Custom Middleware:

app.use((req, res, next) => {
console.log(${req.method} ${req.url}’);
next();

});

5. Static Files

app.use(express.static('public')); // Serve static files from
"public" folder

» Access CSS, JS, images directly by placing them in the public directory.

6. Handling Form Data (POST)

app.post('/submit', (req, res) => {
const { name, email } = req.body;
res.send(Received: ${name}, ${email});

)

7. Error Handling

app.use((req, res, next) => {
res.status(404).send('Page Not Found');
3

// Custom Error Handler

app.use((err, req, res, next) => {
console.error(err.stack);
res.status(500).send('Something broke!"');

});

8. Templating (EJS Setup)

1. Install EJS:

npm install ejs
2. Set EJS as View Engine:
app.set('view engine', 'ejs');
3. Create views/index.ejs:

<!DOCTYPE html>
<html>
<head><title>Express EJS</title></head>
<body>

<hl>Hello, <%= name %>!</hl>
</body>
</html>

4. Render EJS Template:

app.get('/', (req, res) => {
res.render('index', { name: 'Express' });

});

9. JSON Response

app.get('/api/user', (req, res) => {
res.json({ id: 1, name: 'John Doe' });

)

10. Redirects

app.get('/google', (req, res) => {
res.redirect('https://google.com');

)

11. Route Grouping (Router)
const userRouter = express.Router();

userRouter.get('/', (req, res) => {
res.send('User List');

)
userRouter.get('/:id', (req, res) => {
res.send(User ID: ${req.params.id});

});

app.use('/users', userRouter);

12. File Upload (Multer)

1. Install Multer:
npm install multer
2. Upload File:

const multer = require('multer');
const upload = multer({ dest: 'uploads/' });

app.post('/upload', upload.single('file'), (req, res) => {
res.send(File uploaded: ${req.file.originalname});

});

13. Connect to MongoDB (Mongoose)

1. Install Mongoose:
npm install mongoose

2. Connect to DB:

const mongoose = require('mongoose');
mongoose.connect('mongodb://localhost:27017/mydb', { useNewUrlParser:
true });

const User = mongoose.model('User', { name: String });
app.get('/add-user', async (req, res) => {

const user = new User({ name: 'John' });

awalit user.save();

res.send('User added');

});

14. APl Example (CRUD Operations)

let users = [
{ id: 1, name: 'Alice' },
{ id: 2, name: 'Bob' }

1;

// GET all users
app.get('/api/users', (req, res) => {
res.json(users);

});

// GET user by ID

app.get('/api/users/:id', (req, res) => {
const user = users.find(u => u.id == req.params.id);
if (user) res.json(user);
else res.status(404).send('User not found');

)

// POST new user

app.post('/api/users', (req, res) => {
const newUser = { id: users.length + 1, name: req.body.name };
users.push(newUser);
res.status(201).json(newUser);

// DELETE user

app.delete('/api/users/:id', (req, res) => {
users = users.filter(u => u.id !'= reqg.params.id);
res.status(204).send();

});

15. Useful Middleware

const cors = require('cors');
app.use(cors()); // Enable CORS

const morgan = require('morgan');
app.use(morgan('dev')); // Logging requests

16. Common Commands

npm start # Start server

nodemon index.js # Auto-restart on change (install
nodemon globally)

npm install --save express # Install express

