Table of Contents

a
v

e 1. Installation and Setup
o Install Ember CLI (Globally):
o Create a New Ember Project:
e 2. Project Structure (Key Folders)
e 3. Running the Application
e 4, Generating New Files
* 5. Creating a Route
o Generate a Route:
o app/router.js:
o app/routes/about.js:
o app/templates/about.hbs:
* 6. Creating a Component
o Generate Component:
o app/components/hello-world.js:
o app/templates/components/hello-world.hbs:

o Using the Component (in application.hbs):

e 7. Template Syntax (Handlebars)
o Dynamic Data Binding:
o Conditional Rendering:
o Looping (each):
» 8. Actions (Event Handling)
* 9. Two-Way Data Binding (@tracked)
10. Models (Ember Data)
o Generate Model:
o app/models/user.js:
11. Fetch Data from APl (Model Hook)
12. Forms and Input Binding
13. Services (Global State Management)
o Generate Service:
o app/services/auth.js:
o Injecting Service (Component):
14. Helper Functions

15. Testing (Ember QUnit)

16. Useful Commands

1. Installation and Setup

Install Ember CLI (Globally):

npm install -g ember-cli

Create a New Ember Project:

ember new my-ember-app

cd my-ember-app
ember serve

e Visit:

http://localhost:4200

2. Project Structure (Key Folders)

my -ember-app/

—— app/

—— components/
—— controllers/
—— models/

— routes/

—— services/
— templates/
— styles/

—— public/
— tests/
— config/
—— package.json

H oW R H H R HH

H W H W

Main app code

Reusable components
Controllers for routes
Data models (Ember Data)
Route handlers

Shared logic/services
Handlebars templates
CSS/SCSS styling

Static files

Automated tests
Environment configuration
Project dependencies

3. Running the Application

ember serve
e Development Server:

http://localhost:4200

4. Generating New Files

ember generate component my-component
ember generate route about

ember generate model user

ember generate service auth

5. Creating a Route

Generate a Route:

ember generate route about

app/router.js:

import EmberRouter from '@ember/routing/router’;
import config from './config/environment’;

const Router = EmberRouter.extend({
location: config.locationType,
rootURL: config.rootURL

3

Router.map(function() {
this.route('about');

});

export default Router;

app/routes/about.js:

import Route from '@ember/routing/route’;

export default class AboutRoute extends Route {
model () {
return { message: 'Welcome to the About Page!' };

}
}

app/templates/about.hbs:

<h1>{{model.message}}</hl>

6. Creating a Component

Generate Component:
ember generate component hello-world
app/components/hello-world.js:

import Component from '@glimmer/component’;

export default class HelloWorldComponent extends Component {
message = 'Hello from Ember!';

}
app/templates/components/hello-world.hbs:
<h1l>{{this.message}}</h1l>

Using the Component (in application.hbs):

<HelloWorld />

7. Template Syntax (Handlebars)

Dynamic Data Binding:
<h1l>{{model.title}}</h1>
Conditional Rendering:

{{#1if user.islLoggedIn}}
<p>Welcome back!</p>

{{else}}

<p>Please log in.</p>

{{7if}}
Looping (each):

{{#each this.items as |item|}}
{{item.name}}</1li>
{{/each}}

8. Actions (Event Handling)

<button {{on "click" this.sayHello}}>Click Me</button>

import Component from '@glimmer/component';
import { action } from '@ember/object';

export default class ButtonComponent extends Component {
@action
sayHello() {
alert('Hello, Ember!');
}
}

9. Two-Way Data Binding (@tracked)

import Component from '@glimmer/component’;
import { tracked } from '@glimmer/tracking';

export default class CounterComponent extends Component {
@tracked count = 0;

@action
increment() {
this.count++;

}
}

<p>Count: {{this.count}}</p>
<button {{on "click" this.increment}}>Increment</button>

10. Models (Ember Data)

Generate Model:
ember generate model user
app/models/user.js:

import Model, { attr } from '@ember-data/model’;

export default class UserModel extends Model {
@attr name;
@attr email;

}

11. Fetch Data from API (Model Hook)

import Route from '@ember/routing/route’;
import { service } from '@ember/service’;

export default class UsersRoute extends Route {
@service store;

model () {
return this.store.findAll('user');
}
}

12. Forms and Input Binding

<input type="text" value={{this.username}} {{on "input"
this.updateName}}>
<p>Your name: {{this.username}}</p>

import Component from '@glimmer/component';
import { tracked } from '@glimmer/tracking’;
import { action } from '@ember/object’;

export default class NameFormComponent extends Component {
@tracked username = '';

@action
updateName(event) {
this.username = event.target.value;
}
}

13. Services (Global State Management)

Generate Service:

ember generate service auth

app/services/auth.js:

import Service from '@ember/service';
import { tracked } from '@glimmer/tracking’;

export default class AuthService extends Service {
@tracked islLoggedIn = false;

login() {
this.isLoggedIn = true;

}
}

Injecting Service (Component):

import Component from '@glimmer/component’;
import { inject as service } from '@ember/service';

export default class NavbarComponent extends Component {
@service auth;

}

{{#if this.auth.islLoggedIn}}
<p>Welcome User!</p>

{{else}}
<button {{on "click" this.auth.login}}>Login</button>

{{/71f}}

14. Helper Functions

ember generate helper capitalize

import { helper } from '@ember/component/helper"';

export default helper(function capitalize([text]) {
return text.toUpperCase();

});

<p>{{capitalize "hello ember"}}</p>

15. Testing (Ember QUnit)

ember test

e Run Specific Test:

ember test

16. Useful

ember
ember
ember
ember
ember
ember

serve
build
test
generate
generate
generate

--filter="component:hello-world"
Commands
Start development server
Build project
Run tests
route about # Generate route

component nav # Generate component
model post # Generate model

This cheat sheet covers essential topics to kickstart your Ember.js projects

