Table of Contents

e 1. What is Django?

e 2. Installation

e 3. Create a Django Project

* 4. Project Structure

e 5. Create an App

* 6. Models (Database Design)

e 7. Django Admin

» 8. Views (Business Logic)

* 9. URLs (Routing)

10. Templates (Frontend Design)
11. Static Files (CSS, S, Images)
12. Forms (User Input)

e 13. Query Data (ORM Queries)

e 14. Middleware

15. User Authentication

16. Deployment

17. Common Django Commands
18. Useful Shortcuts

o Example: Simple Blog App

1. What is Django?

* Django is a Python-based web framework that follows the Model-View-
Template (MVT) architecture.
 Why Use Django?
o Fast development
o Secure by default
o Scalable and maintainable

2. Installation
pip install django
Verify Installation:

django-admin --version

3. Create a Django Project

django-admin startproject projectname
cd projectname
python manage.py runserver

e Access at: http://127.0.0.1:8000/

4. Project Structure

projectname/
—— manage.py # Command-line utility
—— projectname/ # Project directory
— init .py
—— asgi.py # ASGI config
— settings.py # Project settings
—— urls.py # URL routing
— wsgi.py # WSGI config
— db.sqlite3 # Default SQLite database

5. Create an App

python manage.py startapp appname

Register the App in settings.py:

INSTALLED APPS = [
"appname’,

]

6. Models (Database Design)

Define Models (in models.py):

from django.db import models

class Post(models.Model):
title = models.CharField(max length=100)
content = models.TextField()
created at = models.DateTimeField(auto now add=True)

Apply Migrations:

python manage.py makemigrations
python manage.py migrate

7. Django Admin

python manage.py createsuperuser
python manage.py runserver

e Access Admin Panel: http://127.0.0.1:8000/admin/
Register Model for Admin (in admin.py):

from .models import Post
admin.site.register(Post)

8. Views (Business Logic)
Define Views (in views.py):

from django.shortcuts import render

def home(request):
return render(request, 'home.html', {'name': 'Django'})

9. URLs (Routing)

Map URLs (in urls.py):

from django.urls import path
from appname import views

urlpatterns = [
path('', views.home, name='home'),

]

10. Templates (Frontend Design)

Create HTML File (in templates/home.html):

<!DOCTYPE html>
<html>
<head>
<title>Home</title>
</head>
<body>
<h1l>Welcome to {{ name }}!</h1l>
</body>

</html>

11. Static Files (CSS,]S, Images)

Configure in settings.py:
STATIC URL = '/static/'
Usage in Template:

{% load static %}
<link rel="stylesheet" href="{% static 'css/style.css' %}">

12. Forms (User Input)

Create Form (in forms.py):

from django import forms

class ContactForm(forms.Form):
name = forms.CharField(max length=100)
email = forms.EmailField()
message = forms.CharField(widget=forms.Textarea)

13. Query Data (ORM Queries)

Get all objects
Post.objects.all()

Filter objects
Post.objects.filter(title contains='Django')

Get single object
Post.objects.get(id=1)

Create new entry
Post.objects.create(title="'New Post', content='Hello World!")

Update entry

post = Post.objects.get(id=1)
post.title = 'Updated Title'
post.save()

Delete entry
post.delete()

14. Middleware

Custom Middleware (in middleware.py):

from django.utils.timezone import now

class TimingMiddleware:
def init (self, get response):
self.get response = get response

def call (self, request):
print(f"Request at {now()}")
response = self.get response(request)
return response

Add to settings.py:

MIDDLEWARE = [
‘appname.middleware.TimingMiddleware’,

]

15. User Authentication
Login View (in views.py):
from django.contrib.auth import authenticate, login
def user login(request):
user = authenticate(request, username='john', password='secret')

if user:
login(request, user)

16. Deployment

python manage.py collectstatic

e Use Gunicorn and Nginx for production deployment.

17. Common Django Commands

python manage.py runserver # Start server

python manage.py makemigrations # Create migration files
python manage.py migrate # Apply migrations
python manage.py createsuperuser # Create admin user
python manage.py collectstatic # Collect static files
python manage.py shell # Django shell

18. Useful Shortcuts

* Django Shell:
python manage.py shell

e Check for Errors:

python manage.py check

Example: Simple Blog App

models.py

class Blog(models.Model):
title = models.CharField(max length=100)
body = models.TextField()

views.py
def blog list(request):
blogs = Blog.objects.all()
return render(request, 'blog list.html', {'blogs': blogs})

urls.py
path('blogs/', views.blog list, name='blog list"')

