
Table of Contents

1. What is Django?
2. Installation
3. Create a Django Project
4. Project Structure
5. Create an App
6. Models (Database Design)
7. Django Admin
8. Views (Business Logic)
9. URLs (Routing)
10. Templates (Frontend Design)
11. Static Files (CSS, JS, Images)
12. Forms (User Input)
13. Query Data (ORM Queries)
14. Middleware
15. User Authentication
16. Deployment
17. Common Django Commands
18. Useful Shortcuts

Example: Simple Blog App

1. What is Django?
Django is a Python-based web framework that follows the Model-View-
Template (MVT) architecture.
Why Use Django?

Fast development
Secure by default
Scalable and maintainable

2. Installation
pip install django

Verify Installation:

django-admin --version

3. Create a Django Project
django-admin startproject projectname
cd projectname
python manage.py runserver

Access at: http://127.0.0.1:8000/

4. Project Structure
projectname/
│
├── manage.py # Command-line utility
├── projectname/ # Project directory
│ ├── __init__.py
│ ├── asgi.py # ASGI config
│ ├── settings.py # Project settings
│ ├── urls.py # URL routing
│ └── wsgi.py # WSGI config
└── db.sqlite3 # Default SQLite database

5. Create an App
python manage.py startapp appname

Register the App in settings.py:

INSTALLED_APPS = [
 'appname',
]

6. Models (Database Design)
Define Models (in models.py):

from django.db import models

class Post(models.Model):
 title = models.CharField(max_length=100)
 content = models.TextField()
 created_at = models.DateTimeField(auto_now_add=True)

Apply Migrations:

python manage.py makemigrations
python manage.py migrate

7. Django Admin
python manage.py createsuperuser
python manage.py runserver

Access Admin Panel: http://127.0.0.1:8000/admin/

Register Model for Admin (in admin.py):

from .models import Post
admin.site.register(Post)

8. Views (Business Logic)
Define Views (in views.py):

from django.shortcuts import render

def home(request):
 return render(request, 'home.html', {'name': 'Django'})

9. URLs (Routing)
Map URLs (in urls.py):

from django.urls import path
from appname import views

urlpatterns = [
 path('', views.home, name='home'),
]

10. Templates (Frontend Design)
Create HTML File (in templates/home.html):

<!DOCTYPE html>
<html>
<head>
 <title>Home</title>
</head>
<body>
 <h1>Welcome to {{ name }}!</h1>
</body>

</html>

11. Static Files (CSS, JS, Images)
Configure in settings.py:

STATIC_URL = '/static/'

Usage in Template:

{% load static %}
<link rel="stylesheet" href="{% static 'css/style.css' %}">

12. Forms (User Input)
Create Form (in forms.py):

from django import forms

class ContactForm(forms.Form):
 name = forms.CharField(max_length=100)
 email = forms.EmailField()
 message = forms.CharField(widget=forms.Textarea)

13. Query Data (ORM Queries)
Get all objects
Post.objects.all()

Filter objects
Post.objects.filter(title__contains='Django')

Get single object
Post.objects.get(id=1)

Create new entry
Post.objects.create(title='New Post', content='Hello World!')

Update entry
post = Post.objects.get(id=1)
post.title = 'Updated Title'
post.save()

Delete entry
post.delete()

14. Middleware
Custom Middleware (in middleware.py):

from django.utils.timezone import now

class TimingMiddleware:
 def __init__(self, get_response):
 self.get_response = get_response

 def __call__(self, request):
 print(f"Request at {now()}")
 response = self.get_response(request)
 return response

Add to settings.py:

MIDDLEWARE = [
 'appname.middleware.TimingMiddleware',
]

15. User Authentication
Login View (in views.py):

from django.contrib.auth import authenticate, login

def user_login(request):
 user = authenticate(request, username='john', password='secret')
 if user:
 login(request, user)

16. Deployment
python manage.py collectstatic

Use Gunicorn and Nginx for production deployment.

17. Common Django Commands
python manage.py runserver # Start server
python manage.py makemigrations # Create migration files
python manage.py migrate # Apply migrations
python manage.py createsuperuser # Create admin user
python manage.py collectstatic # Collect static files
python manage.py shell # Django shell

18. Useful Shortcuts
Django Shell:

python manage.py shell

Check for Errors:

python manage.py check

Example: Simple Blog App

models.py
class Blog(models.Model):
 title = models.CharField(max_length=100)
 body = models.TextField()

views.py
def blog_list(request):
 blogs = Blog.objects.all()
 return render(request, 'blog_list.html', {'blogs': blogs})

urls.py
path('blogs/', views.blog_list, name='blog_list')

