Table of Contents

\$

- 1. General Information
- 2. Isotopes of Calcium
- 3. Physical Properties
- 4. Chemical Properties
 - Reaction with Water:
 - Reaction with Oxygen:
- 5. Occurrence and Abundance
- 6. Industrial Production of Calcium
- 7. Uses of Calcium
- 8. Important Calcium Compounds
- 9. Biological Importance of Calcium
- 10. Calcium in Environmental Chemistry
- 11. Safety and Hazards
 - Handling Precautions:
 - Fun Facts About Calcium:

1. General Information

• Symbol: Ca

Atomic Number: 20Atomic Mass: 40.08 u

• Group: 2 (Alkaline Earth Metals)

• Period: 4

• Block: s-block

• Electron Configuration: 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²

• Valence Electrons: 2

• Phase at Room Temperature: Solid

2. Isotopes of Calcium

Isotope	Protons	Neutrons	Abundance	Notes
⁴⁰ Ca	20	20	96.9%	Most abundant, stable.
⁴² Ca	20	22	0.65%	Stable.
⁴³ Ca	20	23	0.14%	Stable.
⁴⁴ Ca	20	24	2.08%	Stable.
⁴⁸ Ca	20	28	0.19%	Rare, used in nuclear research.

3. Physical Properties

Color: Silvery-whiteOdor: Odorless

Density: 1.55 g/cm³
Melting Point: 842°C
Boiling Point: 1,484°C
State at STP: Solid

• Soft Metal: Can be cut with a knife.

4. Chemical Properties

- Moderately Reactive:
 - \circ Reacts readily with water to form calcium hydroxide (Ca(OH)₂) and hydrogen gas (H₂).
 - Reacts with oxygen to form a thin layer of calcium oxide (CaO).
- Forms Alkaline Solutions in water.
- Burns with a Bright Orange-Red Flame.

Reaction with Water:

$$Ca + 2H2O \rightarrow Ca(OH)2 + H2↑$$

Reaction with Oxygen:

5. Occurrence and Abundance

- 5th most abundant element in Earth's crust.
- Found in:
 - ∘ Minerals: Limestone (CaCO₃), Gypsum (CaSO₄·2H₂O), Fluorite (CaF₂).
 - Bones and Teeth: Makes up 99% of body calcium in humans.
- Seawater: Contains calcium ions (Ca²⁺).

6. Industrial Production of Calcium

• Electrolysis of Molten Calcium Chloride (CaCl₂):

• Thermal Reduction:

7. Uses of Calcium

Application Description

Construction Limestone and gypsum used in cement and plaster.

Steel Production Removes impurities as a flux.

Chemical Manufacturing Produces calcium compounds (e.g., CaCl₂, Ca(OH)₂).

Pharmaceuticals Supplements and antacids.

Glass and Ceramics Calcium carbonate (CaCO₃) strengthens glass.

Fertilizers Calcium nitrate (Ca(NO₃)₂) enriches soil.

8. Important Calcium Compounds

Compound	Formula	Use
Calcium Carbonate	$CaCO_3$	Chalk, limestone, antacids.
Calcium Oxide (Quicklime)	CaO	Cement, steel, and paper.
Calcium Hydroxide	Ca(OH) ₂	Plaster, water treatment.
Calcium Chloride	$CaCl_2$	De-icing roads, food preservative.
Calcium Nitrate	Ca(NO ₃) ₂	Fertilizer.
Calcium Sulfate	CaSO ₄	Plaster of Paris, drywall.

9. Biological Importance of Calcium

- Essential for Life:
 - Builds bones and teeth (hydroxyapatite).
 - Regulates nerve function, muscle contractions, and blood clotting.
- Cellular Function:
 - Calcium ions (Ca²⁺) play a role in cell signaling and enzyme activation.
- Daily Requirement:
 - Adults: 1,000–1,200 mg/day.

10. Calcium in Environmental Chemistry

- Water Hardness:
 - Calcium ions cause hard water, forming scale in pipes.
- Carbonate Cycle:
 - Calcium carbonate in oceans helps regulate CO₂ levels through the carbon cycle.
- Soil Health:
 - Calcium enhances soil structure and plant growth.

11. Safety and Hazards

- Reacts with Water:
 - Generates heat and hydrogen gas, which can ignite.
- Irritant:
 - Calcium hydroxide (slaked lime) can cause skin and eye burns.
- Non-Toxic in Small Quantities:
 - Excessive intake can cause hypercalcemia (calcium buildup in the body).

Handling Precautions:

- Store in dry environments to prevent reactions with moisture.
- Use protective gear (gloves, goggles) when handling calcium compounds.

Fun Facts About Calcium:

- Calcium was isolated in 1808 by Sir Humphry Davy.
- Calcium carbonate forms stalactites and stalagmites in caves.
- Calcium ions are essential for the "glow" in fireflies.
- Bone fossils and shells are primarily composed of calcium minerals.