
Here is a C# Basics Cheat Sheet covering fundamental concepts, syntax, and
examples.

Table of Contents

1. Hello World (Basic Syntax)
2. Variables & Data Types
3. Constants
4. Operators
5. Conditionals
6. Switch Case
7. Loops

For Loop
While Loop
Do-While Loop

8. Arrays
9. Methods (Functions)
10. Classes & Objects
11. Encapsulation (Getters & Setters)
12. Inheritance
13. Polymorphism
14. Interfaces
15. Exception Handling
16. Reading User Input
17. File Handling

Writing to a File
Reading from a File

18. Lists
19. Dictionaries
20. Asynchronous Programming
Conclusion

1. Hello World (Basic Syntax)
using System;

class Program {
 static void Main() {
 Console.WriteLine("Hello, World!"); // Output text
 }
}

using System; → Includes standard libraries.
Main() → Entry point of the program.
Console.WriteLine() → Prints text to the console.

2. Variables & Data Types
int age = 25; // Integer
double price = 9.99;// Decimal number
char grade = 'A'; // Single character
string name = "John"; // Text
bool isActive = true; // Boolean

int → Whole numbers.
double → Floating-point numbers.
char → Single characters.
string → Text.
bool → True or False.

3. Constants
const double PI = 3.14159; // Cannot change after assignment

4. Operators

Operator Description Example
+ Addition a + b
– Subtraction a – b
* Multiplication a * b
/ Division a / b

Operator Description Example
% Modulus a % b
++ Increment a++
— Decrement a–

5. Conditionals
int num = 10;
if (num > 5) {
 Console.WriteLine("Greater than 5");
} else if (num == 5) {
 Console.WriteLine("Equal to 5");
} else {
 Console.WriteLine("Less than 5");
}

6. Switch Case
char grade = 'A';

switch (grade) {
 case 'A':
 Console.WriteLine("Excellent!");
 break;
 case 'B':
 Console.WriteLine("Good!");
 break;
 default:
 Console.WriteLine("Invalid grade");
 break;
}

7. Loops

For Loop

for (int i = 0; i < 5; i++) {

 Console.WriteLine(i);
}

While Loop

int count = 0;
while (count < 5) {
 Console.WriteLine(count);
 count++;
}

Do-While Loop

int num = 0;
do {
 Console.WriteLine(num);
 num++;
} while (num < 5);

8. Arrays
int[] numbers = { 1, 2, 3, 4, 5 };
Console.WriteLine(numbers[0]); // Outputs 1

9. Methods (Functions)
static void Greet(string name) {
 Console.WriteLine("Hello, " + name);
}

Greet("Alice");

static → Methods must be static inside a static class.
Parameters → Passed inside ().
Return Value Example

static int Add(int a, int b) {
 return a + b;
}

Console.WriteLine(Add(3, 4)); // Outputs 7

10. Classes & Objects
class Car {
 public string brand;

 public Car(string b) {
 brand = b;
 }
}

Car myCar = new Car("Toyota");
Console.WriteLine(myCar.brand);

Class → Defines a blueprint.
Object → Instance of a class.

11. Encapsulation (Getters & Setters)
class Person {
 private string name;

 public void SetName(string newName) {
 name = newName;
 }

 public string GetName() {
 return name;
 }
}

Person p = new Person();
p.SetName("Alice");
Console.WriteLine(p.GetName()); // Alice

12. Inheritance
class Animal {
 public void MakeSound() {
 Console.WriteLine("Some sound");
 }
}

class Dog : Animal {
 public void Bark() {
 Console.WriteLine("Woof!");
 }
}

Dog myDog = new Dog();
myDog.MakeSound(); // Inherited method
myDog.Bark(); // Dog's own method

13. Polymorphism
class Animal {
 public virtual void Speak() {
 Console.WriteLine("Animal sound");
 }
}

class Dog : Animal {
 public override void Speak() {
 Console.WriteLine("Bark!");
 }
}

Animal myAnimal = new Dog();
myAnimal.Speak(); // Outputs "Bark!"

14. Interfaces
interface IAnimal {
 void MakeSound();
}

class Dog : IAnimal {
 public void MakeSound() {
 Console.WriteLine("Bark!");
 }
}

Dog myDog = new Dog();
myDog.MakeSound();

15. Exception Handling
try {
 int x = 10 / 0; // Error
} catch (Exception e) {
 Console.WriteLine("Error: " + e.Message);
} finally {
 Console.WriteLine("This runs no matter what.");
}

16. Reading User Input
Console.Write("Enter your name: ");
string userName = Console.ReadLine();
Console.WriteLine("Hello, " + userName);

17. File Handling

Writing to a File

using System.IO;
File.WriteAllText("test.txt", "Hello World!");

Reading from a File

string content = File.ReadAllText("test.txt");
Console.WriteLine(content);

18. Lists
using System.Collections.Generic;

List<string> names = new List<string>() { "Alice", "Bob" };
names.Add("Charlie");
Console.WriteLine(names[2]); // Outputs Charlie

19. Dictionaries
using System.Collections.Generic;

Dictionary<string, int> ages = new Dictionary<string, int>();
ages["Alice"] = 25;
ages["Bob"] = 30;

Console.WriteLine(ages["Alice"]); // 25

20. Asynchronous Programming
using System;
using System.Threading.Tasks;

class Program {
 static async Task Main() {
 await DoWork();
 Console.WriteLine("Main Finished");
 }

 static async Task DoWork() {
 await Task.Delay(2000);
 Console.WriteLine("Work Done");
 }

}

Conclusion
This C# Cheat Sheet covers:

Basic syntax
Variables, loops, conditionals
OOP principles (Encapsulation, Inheritance, Polymorphism)
Exception handling & file handling
Asynchronous programming

